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Abstract

We study ionospheric zonal shear flow non-normality induced linear coupling of planetary
scale modified Rossby waves and Khantadze waves on the basis of nonmodal approach. We
demonstrate that the modified Rossby waves generate Khantadze waves due to the coupling for a
quite wide range of ionospheric and shear flow parameters.

1. Introduction

The main ingredients of the ionosphere's planetary scale activity are spatially inhomogeneous
zonal winds (shear flows) and slow and fast waves. The slow waves are Rossby waves modified by
the geomagnetic field. The fast ones caused by the Hall effect, have significant magnetic
fluctuations and called Khantadze waves [1,2]. The shear flow can drastically affect the energy and
structure of the slow and fast waves. For instance, the flow forms nonlinear structures of waves [3].
The modal/spectral linear approach specifies the grows of slow and fast wave harmonics at nonzero
second derivative of the basic/shear flow U, =0. However, in the modal analysis, the focus is on

the asymptotic stability of flows and finite time period dynamics (so-called, the transient
dynamics) left for speculation.

In the 1990s, the emphasis shifted from the analysis of long-time asymptotic flow stability to the
study of transient behavior on the basis of so-called non-modal approach. (The non-modal analysis
involves the change of independent variables from the laboratory to a moving frame and the study
of the temporal evolution of spatial Fourier harmonics (SFH) of perturbations without any spectral
expansion in time.) This fact resulted a breakthrough of the hydrodynamic community in the
analysis of the linear dynamics of smooth shear flows (e.g. see.[4-7]). According to the non-modal
approach, the early transient period for the perturbations reveal rich and complicate behavior in
smooth (without inflection point) shear flows: the linear dynamics of perturbations in the flows are
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accompanied by intense temporal energy exchange processes between the background flow and
perturbations and between different modes of perturbations.

The purpose of the present paper is the demonstration of the linear generation of fast/Khantadze
waves by modified Rossby waves in ionospheric zonal shear flows. The paper is organized as
follows. In Sect. 2 we present the physical model and dynamical equations in the spectral plane. In
Sect. 3 we present a numerical analysis of the dynamical equations and the summary.

2. Physical model and equations

As is commonly done, we introduce a local Cartesian coordinate system that rotates with the
planet (with angular velocity €, and is centered on a latitude 6, and a distance R,from the planet
center (on the ionospheric E-layer in our case). The x-axis is directed to the east, the y-axis to the
north, and the zaxis in the local vertical direction. We study the linear dynamics of planetary scale
perturbations in the conductive ionospheric E-layer with account of the latitudinal inhomogeneity
(over @ that the same, over the coordinate y) of the Coriolis parameter f and the geomagnetic
field B, :

[(0)=2Q,.(0)=2Q,sin0= f,+ [, 1

with f, =2Q,sing,

and
B af _2Q,cos 6,
ay R=R, Ro ’
=6,
Hoz(a)zHoz(ao)_ﬁH'y’ (2)
with

H ,is the geomagnetic field at the pole. The zonal flow (directed along x axis) has latitudinal
shear U, = (Sy,0,0).

As noted in the introduction, we base our study on the simplified set of 2D equations (see
Egs.(3) of [3]) written in the linear limit. The set takes into account Hall’s effect and facts that
planetary scale motions do not perturb density and concentration of the medium components [12].
So, the starting equations for our analysis are:

d d d 1 h
(—"‘Sy—xj‘//"‘ﬁ v ,BHa =0 3)
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where, y(x,y,t) is the stream function of the neutral-gas perturb motion in the horizontal
plane; h_(x,y,t)- the vertical z-component of magnetic field strength perturbation;

A=09%/0x> +0? /9y’ - the two dimensional Laplacian; & =c/eN,- the Hall parameter; c - speed of

light; e - value of the electron charge; N - the concentration of electrons.

Let's introduce non-dimensional variables and parameters:

X,
1Q, cos G, = t, M:>(x,y), L:S,
R, Q, cos 6,
o 5 (5)
ma:a, Lzzn//, S =h,
Hp Q)R »

and rewrite the dynamical system in the non-dimensional form:

L v,

2y Ly 2 2 2% g, 6
(aﬁ yaxj"” ax A o ©)
3 9 L oh, Ay

2y L —avr @ Yy, 7
(afyaszaf‘aﬂax @

Where V,=H , !/ ({J47mpy Q) R,) defines the neutral-gas-loaded Alfven velocity normalised

on R, .

The form of the dynamical equations permit a decomposition of perturbed quantities into
shearing plane waves (so-called, Kelvin waves). In fact, these waves represent spatial Fourier
harmonics (SFHs) with time-dependent amplitudes and phas es (e.g., see [8-10]):

F(x,y,0)= Pk, k, (0),0) exp(ik x+ik, (1) y), 8)

k, (1) = ko — Sk,t, ©)

where F ={y,h,} denotes the perturbed quantities and F :{Q’E}_ the amplitudes of the

corresponding SFHs.
Substituting Eq.(8) into Egs.(6,7) and introducing @z Q-kz(t) , k()= k? +k§(t), one can get
the following system:

00 ik, ~ . 5
L0 Gk Vh,
ot k2(t)¢ Hala

on ik, -
o kzz o ik, aV 2k, (10)

In the shearless limit, § =0, k, and k* are time independent and coefficients of the dynamical

equations (10) are constant. Hence, one can use the Fourier expansion of ¢ and @Z in time,
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1 exp(—iar) , and obtain the dispersion equation of the considered system in the shearless limit:

K w* +(ak®*V; +2)k o+ 2a—1k2V: =0,
(11)

Solutions of the dispersive equation are

o; =—2k—;2(0”<2"§ 124 @k -2 +4KV}). (12)

Egs.(12) describe fast and slow wave harmonics. At ak’V; >>1 one can write:

k., 200—1 2
=X , w, = —a'ka 5 13

S k2 o f A ( )
where @, is the frequency of the modified/magnetized Rossby waves. This slow wave mode
propagates either eastward or westward depending on the sign of 2—1; @, is the frequancy of

the Khantadze waves [3,11]. This wave mode has a substantial magnetic component and propagates
rapidly westward.

One can also easily get the expression of the spectral energy of perturbations:

~12

¢ 2
E=E +E, = U +V2 |k}

k(1)

(14)

The spectral energy is the sum of quadratic forms of stream function and magnetic field
harmonics, i.e., the sum of spectral kinetic and magnetic energies. The magnetic energy is mostly
connected with the Khantadze waves.

3. Numerical results and summary

For numerical integration of Egs. (10) we use a standard Runge—Kutta scheme (MATLAB
ode34 RK implementation). In order to study generation of Khantadze waves by modified Rossby
waves, we initially imposing in Egs. (10) a tightly leading (k, =1, k (0)=10,ie, k,(0)/k, >>1)

pure magnetised Rossby wave harmonic:

. . 1 2k 1
0)=1, h:(0) = O+ | = .
9(0) ©0) V2 [@( )+k2(0)j A2V

(15)

3

For the ionospheric E-layer parameters [11]: electrons concentration - N =10°cm™ ; neutral

gas concentration - N =10"¢m™; Neutral gas mass density - p, =4.175-10""" gr-cm™. These
parameters give V,; =0.022, & =38. For these parameters h (0)= 1.2-107. Finally, for these initial
conditions and nondimensional shear parameter S =0.1 Egs. (10) gives the time dynamics of
expansion of ;) @Z , E,(t)and E, (t) presented on Figs 1-4. The figures show that the magnetic

field is negligibly perturbed in the leading phase — we have mostly stream function (kinematic)
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perturbations. However, at &, (7)/k, <1the linear coupling starts the generation of magnetic field

oscillations (see Fig2) that relates to the Khantadze waves. Figs. 3 and 4 indicate that, in the initial
trailing region (0>k (t)/k, >—1), the spectral magnetic energy becomes comparable to the

spectral kinetic one, while, in the tightly trailing region (—-1>>k,(#)/k, ), the spectral magnetic

energy highly exceeds the spectral kinetic one. So, starting with a tightly leading modified Rossby
waves, finally, the linear dynamics give the related harmonic of tightly trailing magnetic
oscillations — the Khantadze waves. The spectral energy of the generated Khantadze waves more
than an order of magnitude higher than the spectral energy of the initial tightly leading modified
Rossby waves for the considered ionospheric and shear flow parameters.
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Fig. 1. The evolution of the real part of a stream function harmonic, Re @, for initial conditions

correspond to the pure magnetised Rossby wave harmonic and parameters

k. =1,k,(0)=10, V{ =0.022, o =38.
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Fig. 2. The evolution of the real part of a magnetic field strength harmonic, Reh., for the same
case as in Fig. 1.
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Figure 3. Normalized spectral kinetic energy vs. time, E, (), for the same case as in Fig. 1.
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Figure 4. Normalized spectral magnetic energy vs. time, E, (), for the same case as in Fig. 1.
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JluHewHas reHepanys BoaH XaHTaA3e MOANGUIIIPOBAHHUMY BOJIHAMU
Poccbu

B I/IOHOC(I)EPHI:IX CIOBUTI'OBBIX TEYECHUAX

P. Yanumsunu, O. Xapmunazze, E. Yuasa
JIuHeiiHas CBA3B MEXAYy IIIaHE€TAPHBIX Macurtabos MO,ILI/I(i)I/IHI/IPOBaHHBIMI/I BostHaMu Poccbu u
BOJIHAMH XaHTa,ILBe O6YCJIOBJIeHHaH HEOPTOTOHAJIPHOCTBIO I/IOHOC(l)ePHBIX CABHUTI'OBBIX TeYeHUUH
M3ydyeHa Ha OCHOBe HEMOJAJIBHOTO Tozxoja. IlokasaHo, 4YTO B pesyiabTaTe STOM CBA3U
TeHEePUPYIOTCA BOJHBL XaHTa,ILBe A1 HIXPOKOI'0 AMdIlld30HA ITapaMeETpPOB I/IOHOC(l)ePBI 1 CABUTOBOTO
Te4YeHUNAd.
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