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Abstract

1t is well known that quality of the hydrophysical fields received as a result of realization of
the prognostic model of the dynamics of the baroclinic ocean considerably depends on quality of
the input data. In the present study, on the basis of the conjugated equations and the perturbation
theory the algorithm for specification of the observational data on the non-stationary processes,
used in the boundary conditions on the free sea surface, is offered. With the purpose of conven-
ience, at first the algorithm on preparation of the initial data for the prognostic model of the ocean
dynamics is considered on an example of two-dimensional, xoz-coordinate plane, transfer-diffusion
equation for a substance, and then - for a three-dimensional problem of dynamics of baroclinic
ocean.

1. Introduction

At solution of problems of ocean dynamics, especially with taken into account non-stationary
atmospheric processes, there is a number of problems. Among them the preparation of initial data
which are absent not only for the World ocean but even for the internal seas, is rather important.
However, this problem can be solved successfully by means of hydrodynamic methods. Consider-
ing a problem of forecasting of ocean currents, it is natural to assume that initial fields, especially in
the upper layer, will be formed basically under forcing of atmospheric non-stationary conditions,
first of all by wind and thermal modes at the free ocean surface. With the purpose of preparation of
the initial data for the problem of the ocean dynamics, at first it is necessary to solve a problem
about a climatic condition of the ocean with zero initial and climatic boundary conditions on a free
surface of the ocean. Then, the received fields are used as the initial data in the problem of ocean
dynamics, where the real data on weather conditions are used as boundary conditions on the ocean
free surface. As a result of solution of this problem we find the solution for perturbation in oceanic
circulation under concrete meteorological situations in the atmosphere within some time period.
Thus, taking into account real perturbations of meteorological processes in the atmosphere, the con-
structed hydrophysical fields can be used as initial conditions at solution of the problem of forecast
of ocean circulation [1].

As a whole the marine forecast can be divided into two stages. At the first stage, the problem
allowing to receive the information about the stationary (climatic) condition of currents and fields
of temperature, salinity, and density under influence wind stress, heat and salinity fluxes on the
ocean free surface, is solving. At the second stage, the received climatic hydrophysical fields, when
there are real continuous non-stationary meteorological fields in the atmosphere within the time pe-
riod 0 <¢<¢ previous to a prognostic interval ¢, <t <7, are used as initial fields for solution of

the prognostic model of oceanic processes.

It is necessary to note that the local meteorological information is very sensitive to unpredict-
able meteorological "noise" that is essentially reflected on results of mathematical model. At pre-
sent, numerical prognostic models are developed, which qualitatively adequately describe the
physical processes occurring in the oceans and seas [1-19]. However, for qualitatively true descrip-
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tion of the forecast of hydrophysical fields it is necessary to use assimilation of various observa-
tions.

Assimilation of measurements represents the procedure, which allows to combine the obser-
vational data with modeling calculations for maximally adequate reproduction of a real state of the
environment [20].

In the present study, on the basis of the conjugated equations and the perturbation theory the
algorithm on specification of the given observations on the non-stationary processes used in the
boundary conditions on the free sea surface sea is offered. As is known, quality of the hydrophysi-
cal fields received as a result of realization of the prognostic model of the dynamics of the baro-
clinic sea considerably depends on quality of these data.

With the purpose of convenience, at first the algorithm on the preparation of the initial data
for a prognostic model is considered on an example of two-dimensional (xoz-vertical plane) trans-
fer-diffusion equation for a substance, and then — for a three-dimensional problem of dynamics of
baroclinic ocean.

The theory of conjugated equations and the theory of perturbations for a long-term weather
forecast and protection of the environment have been developed in Marchuk's numerous articles
and presented in detail in monographies [1, 2]. The method of preparation of initial data developed
in this study is based on above mentioned researches.

2. Two-dimensional prognostic problem

Let us consider, for example, a 2D transfer-duffusion equation in the area Q (vertical section in the
coordinate system xoz, with z-axis directed vertically downward ) with depth H. Thus, we have an
equation

T, +divul — T, —viT.. =0 (1)
with boundary and initial conditions

viT. =0r on z=0,
T.=0 on z=H, (2)
T.=0 on x=0,L,
T=T,(,z) at t= 0. 3)

Here T is the deviation of temperature of marine water from its standard values T(z),
O, =pT, —-T,)—R, Tyand Tg are deviations of climatic temperature of the ocean surface and
the air at the level z = 2 m, respectively; g is the factor of ocean heat transfer; R = S+A+B, where

R is the radiation flux through the unit square in the plane xoy on the level z; S is the flux of short-
wave solar radiation; A is the flux of long-wave radiation, directed downward and B is the flux of
long-wave radiation, directed upward, Ty is given function; L is the size of the solution domain
along x; u; =, +0uyand vy =v, + v, are horizontal and vertical diffusion coefficients, respec-

tively, where du, and Jv,are already defined on the basis of conjugated equations and the theory
of small perturbations [14, 21, 22]; u and w are known functions, which are the components of

flow velocity vector U , and satisfy the continuity equation
divi = 0
and boundary conditions

u=0 on
w=0 on

u

N
I
o o
o
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Now, with the purpose of creation of a conjugate problem let us multiply the equation (1) by
some function 7" and integrate the result on time variable from 0 to some ¢, and on the area Q.
Then, we will receive

J.”T (T + divuT — urT. —viT, )d.th 4)

The left part of the equality (4) we will transform so that behind brackets under integral
there was function T, and in the brackets — the differential parity containing function T . With this
purpose we consider the operator

A=A, + A,
where
N T= divuT , AT =—u;, T, —v; T

XX zz *

Let
h)= | ghdo,
Q

where integration is made in the area of definition of some functions g and h. Then, with the help
of the Lagrangian identity and homogeneous boundary conditions, corresponding to conditions (2)
and similar conditions for function 7, it is evident that

(r°.A7)=(r" A7)+ (1" A7) = (A" )+ (477" )=
=”‘T(—div;T*—,u’T = viT,, )JQ

0

Thus, we have
Aj=— A, u  A] =4,

Let f and T; are known functions of coordinates, which we will define later. If we assume that

the function T satisfies the conditions

VT = fly+ on =0,

T, =0 on z=H, (5)
T:= 0 on x=0,L,

T’ =Tt: on t=t,, (6)

after corresponding transformations and using (2)—(3) and (5)—(6) from (4) we receive

jj&’T 1‘T}ﬂ2+IIjT(7‘ —divilT” — T v T et =
P’ (7)
jj ﬂﬂy+RhMﬁ+IJthdmh

Assume thatT  satisfies the equation
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T —divul” = 1, Ty, +v; T, (®)

at boundary and initial conditions (5)-(6). The equation (8) is conjugate with respect to the equation
(1).

Let us multiply the equation (1) by T, the equation (8) —by 7T, and integrate them on
the area Q and on time in limits from 0 to 7,,, the result we will subtract from each other. Then

with using the boundary conditions (2)-(3), (5)-(6), after corresponding transformations, we will
receive the quality

”(7;:7; _To*To)dQ_t_rozto(l[JTB + R)ixd =Tsz_0f*dxdt. 9)
2 00 00

Let us assume that

£

12
Vi Yhr i t=t
=T St x—x,) = g i/

g 0, if  t#t

X=X,

/

X#Xg.

m?

Then, as

Ly L 12
[[7as dxar ="1127 ), (x,)),
00 g

and if we assume that 7, =0and 7,, (x)=T..,, (x), from (9) we have

12
Q 0 Vi Vr

t, L
7@1ugz—mﬂ]ﬁmﬂg+jj@;uﬂg+RkMﬁ} r=—t_ (10)
" 0

This formula specifies a relation between temperature in the given point on the surface z = 0 of the
area (2 at the time moment ¢, , initial relation (at t = 0) of the ocean and boundary conditions from

(2). In the formula (10) 7, is given at the initial time moment, but 7, is the solution of the problem
(8), (5)—(6) at condition Tt* =0.
Thus, to use the formula (10) it is necessary for each fixed point x,to solve the conjugate

problem (8), (5)-(6). This circumstance specifies that to use the formula (10) is not effectively, es-
pecially, when we consider a three-dimensional problem of the baroclinic ocean dynamics. How-
ever, to simplify this problem, the surface o of the area Q is divided, for example, on two parts o,
and o, and the average anomaly of temperature in each of them is defined. With this purpose as-
sume in (7) that

12
Y lrs(e-t ), if xeo, (i=12)

f*=1  go,
0, out of the given domain
1’ l:f‘ t = tﬂl
where ot—t,) = i .
0, if t#t,

Our goal is an improvement of the quality of the initial data at 7=, in the prognostic

model, but as is known, it essentially depends on quality of the field of temperature anomaly given
on the boundary conditions on the ocean free surface. In this connection, following the results re-
ceived in [1], we construct corresponding functional for calculation average anomaly of tempera-

ture & (TM,M )on the ocean free surface at the time moment ¢, and then we define the perturbing
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state (anomaly) of temperature on equality TA’;“ =T, +6 (f; J, where TA‘;: is climatic value of

temperature on z = 0 at the time moment ¢, . Function T deﬁned by this way is used on the

boundary conditions on z = 0 for perturbed prognostic equatlon (the real state of the ocean we
name perturbed, and the climatic state we assume as the basic "undisturbed" state of the ocean [1]).
Now we will designate average anomaly of temperature accordingly for subareas o, (1=1, 2)

as follows
1 f =
—I\7T,, dx=Twu
o "
Then, we have
ty L y
H [ ddt = T”jT dx = T”T : (11)
00 g "

Considering (11) from (9), under the condition 7, =0, accordingly for o, and &, we receive
— by L
Ty =-r '[ To*Ton+_”T;0(,3TB + R)dxdt |. (i=1,2). (12)
Q 00

Expressions (12) mean that average anomaly of temperature on o, is calculated by data on the in-
terval 0 <7<t .Itis necessary to notice that the formulas received from (12) ati=1, 2 are visually

similar, though they differ by solution of the conjugate problems. Thus, the problem on definition
of average anomaly of temperature on o, was reduced to the solution of the conjugate problem (8),

(5) - (6) under the condition 7, =0.

Expressions (12) are needed at consideration of the perturbation theory. With this purpose
we will consider the perturbed equation

T'+divul' = u.T' +V.T" . (13)

At the following boundary and initial conditions

viT! =07 on z=0,

T'=0 on z=H, (14)
T'=0 on x=0,L,

T'=T, on t=0, (15)

where 7| is climatic value (the solution of the problem (1)—(3) at condition 7, =0),
Or Zﬂ(T]\’/I _Tb”)_RﬂTAZ[ =T, +6T,, Ty =T, +T,.

Now we multiply the equation (13) by the conjugated function 7, corresponding to the not
perturbed (climatic) problem (1) — (3), and the conjugated problem (8) — by 7', Then, results of
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these operations we will subtract from each other integrate both on time from 0 to ¢, and on the
area Q). Similar to (12) we receive following expressions

t, L
T, = —rT( [[romac+ [[12,(8T; + R)dxdtJ , (i=1,2). (16)
Q 00

Considering that
Ty, =Tu, + 5(?2",m ) T =T + 8T, T, =T +8T7, (i=1,2)

and subtracting from (16) equality (12), we come to the functionals for definition of values

o ﬂ;m , (1=1, 2) accordingly for subareas o, at the moment ¢, . Thus, we have

t

5(?5'@4 ): —FT[” T, 6T dQy + jj BT, OTS: dxdtj . (i=1,2).
Q 00

Further, on equalities
re =13 ol ) (i=1.2) a7

we define perturbed values of temperature anomalies on o, at the time moment ¢, .
Now, let us consider the perturbed equation again

T, +divul" = (uy + Sy )T + (v +6v, )T (18)

at boundary and initial conditions (14)—(15), in addition, on the boundary conditions on z = 0 func-
tions TA’Z“ ,1=1, 2, defined from formulas (17), are used.

Thus, at solution of the problem (18), (14), and (15) it is supposed that the heat flux on the
ocean surface Q7 is known at any moments of time previous prognostic time interval. Choosing as

the initial condition at t = 0 climatic condition of ocean, we will adapt step by step the ocean for the
real perturbations arriving from its surface. It is necessary to notice that in the perturbation problem

(18), (14), and (15), except the specified values of anomalies of temperature 7, A’f i=1,2), in-

cluded in the boundary conditions on the surface of considered area 2, are also used the perturbed
values of factors turbulent diffusion u; = u, + Sy, and v, =v, + Jv, that considerably raises ade-
quacy of the results received on the perturbation problem, with an existing condition of a thermal
condition of ocean [ 22 ]. The received solution of the perturbed problem (18), (14), and (15) or
ditto the information on a thermal mode of the ocean can be used as the initial data by consideration
of prognostic model in the range of time ¢, <t <T'.

On the basis of the above-stated it is possible to summarize that the sequence of realization
of the algorithm of preparation of the input information at the initial time moment 7=¢, for the

prognostic problem is following:
1. On the basis of the theories of the conjugate equations and small perturbations the eddy
factors ov, and Ju, are defined and we can find u; =y, + 0y, and v, =v, + v, ;

2. The problem

23



a—T+A'f =0,
ot

T=0 at t=0,

is solving and there is supposed that the input data used on boundary conditions on the free surface
are climatic data. The problem is solving before quasisteady state achievement.
3. In the range of time 0 <7 <¢, the problem

a—T+A'T=0,
ot
T:Tm at t=0

t

is solving. Here the input data used on the boundary conditions on the free surface are climatic data.
4. within the interval 0<7<¢ at sz =0 the conjugate problem (8), (5), (6) is solving
twice with taken into account o, and o, respectively.

5. It is supposed, that during any moments of time, previous to a predicted interval of time it
is known the heat flux &0, = B(6T,, —6T,) on the ocean surface. Then, solving (18), (14), (15)

during the interval of time 0 <¢ <¢  with use of initial climatic data at t = O ( the solution of the

problem from point 3) the ocean will be adapted step by step to real perturbations getting from the
ocean surface.
6. The functional

5(?;‘% j _— { [[7;o1, a2+ jj BT ,5TS dxdtJ (i=1,2)
0 00

and the perturbed state of the temperature anomaly on the ocean free surface at the time moment
t=t,

T, =T +5(ﬂ';,m) (i=1,2).

m

is calculated.
Here T, =T, -T,, T, is the climatic value, 7, is the solution of the problem from the point 5 at

moment ¢, and 7, is the solution of the problem (8), (5), (6) at conditions T,: =0;

7. On this stage the perturbed problem (18), (14), (15) is solving again, in which in the boundary
conditions (14) at definition of the heat flux on a free surface, function 7 A’Z determined in the item
6 is used, as the initial data at t = 0 solution from point 5 is used, i. e.. 7{ =T, .This procedure can

be continued until then, the necessary approximation between calculated and existing fields of
anomaly of temperature on a free surface of ocean will not be achieved. Here the received solution
T, for the moment of time #, is used as the initial data for prognostic models in the interval of

time ¢, <t<T.

3. Three-dimensional prognostic problem

Now we shall consider 3D problem of the ocean dynamics for which we use results received in the
first part of the present work which concerns specification of the field of the temperature anomaly

24



on the ocean free surface. As we have already noted, the quality of the temperature anomaly re-
ceived as a result of solution of the prognostic baroclinic problem of the ocean dynamics considera-
bly depends on quality of such field.

So, in the closed basin Q, having depth H and lateral surface X, we shall consider the fol-
lowing system of the differential equations, describing dynamics of the baroclinic ocean, written in
terms of deviation from standard values of geophysical fields.

u, +Au—-lv+p. /p,=pdu+vu_,

v+t Ay+lut+p,/py=pv+vy_,

D =8P (19)
u, +v, +w, =0,
T,+AT+y,w=up AT +v;T,,,
S, +A,S+yow=pugAS+vgS,_,

p=o;T+a,S.
As boundary and initial conditions for system (19) we shall accept the following

A [
viu, Z_sz /p() > VYV

z

==7,./py , w=0,

vil, =0 , ViS, =0 on z=0;
u=0 , v=0,0T/0on=0,0S/0n=0 on X; (20)
u,=0,v, =0 ,w=0,7, =0,5,. =0 on z=H;
u=u, ,v=v,,I'=1T,, S=8§, at t=0. (21)

Here u, v, and w are the components of velocity vector u ;p, o, T,and S are the deviations
of the pressure, density, temperature and salinity of sea water from standard values ;(z) ;(z)f(z)
and S(z), respectively; O =S, (R +S. —E"),S,, is the deviation of climatic salinity on the see
surface, R, is the atmospheric precipitation, S, is snowfall, £ is the sublimation or evaporation.

Thus, it is assumed that, change of salinity is defined by the difference between precipitation and
evaporation; 7_,7 _ are the wind stress components along x and y axis; n is the vector of outer

xz9 % yz

normal to the lateral boundary > y, = Tz,ys = gz,aT = 6f(i§)/6i o5 = af(iﬁ)/aﬁ, where f
is the known function of temperature and salinity, and p = f(7,S) is the equation of state of ma-
rine water, A is two-dimensional Laplace operator, u',ur,us,v',vy,vsare the factors of horizontal
and vertical viscosity and diffusion, in addition,

M=+ O, iy s =ty g + Oy s,V =VHOV Vg =Vi g +0Vys.

It is assumed that the coefficients o, du; s, ovm v, are defined on the base of conjugate equa-

tions, the theory of small perturbations and the principle of duality of functionals [14, 21, 22];
u,,v,,1,,S, are known climatic functions of coordinates. Now, let us assume that we found the so-

lution of the problem (19-21) [1-22] and the received functions u, v and w we will consider as coef-
ficients in operator A,. Then we have

ND=AD+ND , N D=AD+ A}, D,
A =divu®@ , M@ =—p'AD—V'D,, | Ny, D =—pp AD -V} D

zz %
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where @ is any function of u, v, T and S. Other designations in the problem (19) - (21) are well-
known. In the problem (19) - (21) index (‘), meaning deviations of pressure, density, temperatures
and salinity of sea water, are omitted.
Let's assume, that the solution and input data of the problem (19)-(21) have the sufficient smooth-
ness providing existence and uniqueness of the solution of the problem [23-28].

Let's consider vectors ¢, F and matrixes A and B

u Uy pp A —pl 0 0/ 0 0
v Yo Pl ppA 0 /0y 0 0
o= w P 0 e 0 0 0 0/0z —-goy - gog ’
)% 0 0/ox 0/0y 0/0z 0 0 0
T T, 0 0 gar 0  goapAr/yr 0
S S, 0 0 gag 0 0 gagAg /v
o, 0 00 0 0
0 p, 0 0 0 0
0 0 0 0 0 0
B= ,
0 0 0 0 0 0
0 0 0 0 ga/yr 0
0 0 0 0 0 gas/ys

Then the system of the equations (19) we shall write in the operational form

op
B—Z+A49p=0 22
o @ (22)

and as initial conditions we will assume
By =BF at t=0,

and the components of an vector-function ¢ satisfy the boundary conditions (20).

Let's find now the conjugated operator 4'" in relation to A". With this purpose we shall con-
sider Lagrangian’ identity

(" 4'p)=(4"9" ),

* * * *

where ¢° =(u L v,ow, o p, T, S*) and scalar product is determined by a ratio

(g,h)z IZ:,_” gh.dQ.

Here g, and 4, are the components of the vector-function g u h.

Now we shall scalary multiply the equations of the system (19) by
oot pv W, p L ga, T /v, ,gasS" /v, accordingly. Then, the received expressions we shall
combine and integrate on time from 0 up to the some ¢, . Then, we receive

26



tJ- I”[pou*(u, +Au-lv+p, /p0)+ pov*(vt +A'v+iu +p, /p0)+ w*(PZ —g(aTT+aSS))+
0 Q

8ar
Yr

+ Pdivu +

T (T + AT +y,w)+ 22587 (S, + ALS + 7 w)|[dQdt = 0. (23)

Vs

Now we assume, that the functions u” ,v",w ,7 uS" satisfy the following conditions

Vil =0, vV =0, w =0, v,T =0y, viS. =0; on z=0;
u.=0,v. =0,w" =0,7, =0,S. =0 on z=H; (24)
u =0, v =0,0T /on=0,0S /on=0 on >

* *

* * * * * *
u=u v =v,, T =1 ,85 =§

* £ * * * * * * * * * * *
where O, =T, + f;,0=S,(R,+S,—-E ), a fT,utm v, T, uS,

at t=t,, (25)

— are any functions. The left

part of the equality (23) we shall transform so that outside of brackets under integral there were
functions u, v, w, P, T, and S, and in brackets — the differential ratio containing functions u", v',

w',P",T" and S” [1, 2]. For this purpose with the help of partial integration, formulas Ostro-
gradsky-Gauss, boundary and initial conditions (20), (21), (24), (25), in view of the continuity equa-

tions

divu=0, divi =0

and some transformations, separate expressions in (23) we will transform to a kind

tm

) Vr Vs

tm
- —-([{j}[j[po (uuf + vv,*)+ g;;r TT, + g}ZS SS; }dﬂ}dﬁ

b 22 2 il
Q

(26)

i i B
o n o Yro "

Vs

- J.J.J.{PO (“;“0 + V;VU )+ g}/ﬁTU*TU + %S;SO }d_(),
A T

S

Yr Vs

J.J.J‘{po (udiv;u* + vdiv;v*)Jr E% Tdivar” + £
P Vr Vs

Vs

]ﬁjiﬂ{p(,y’(u*zlu+V*Av)+g0;;ﬂ}T*AT +MS*AS
) T

j{j J.{p(, (u*div;u + V*diV;lV)+ ST 1" dival + %S*divﬁ}dﬂ}dt =

(27)

Sdiv;S*}dQ}dt,

}dﬂdt =

(28)

= TJ.”{P(M'(”A“* +vAv*)+mTAT* +MSAS*}det,
0 0

Vr Vs
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] [] (ﬁ* gradP + P*div&)dgdt - —] [[[cugraap + pdivi )d<dt, (29)
0 Q 0 Q

HH{/’O W vy, )+ ST gaSvéS*Sﬂ}detz

’r Vs
j HI [/’o il + )+ gO;TVT T go;své SS;}d_thJr (30)
N
J‘”{ ’ T (BT, +R)+ ;T Tf;}d 2,dt,
0% T

where >, is the section of a cylindrical surface at a level z=0.
Let's substitute (26) - (30) in (23), then after corresponding transformations we receive

I s s o0 221k e -1 -1 1)

w(— P+ g(aTT* + aSS*))— P(uY +v) + w:)+ gy_aT T(— T"+A.T - ;/Tw*)+
T
+gy—“s S8 +Ays - 7Sw*)}d£2}dt =
' 31)
_ —”I{po(u;utm v WEET T 8% s }dﬂ +
o) Yr Vs

* HI {po(”:;”o )+ gyar 1T, +£% SJSO}dQ +
r s
Il

Let us assume that the functions «",v",w", P",T andS" satisfy the system of the conjugate equa-
tions

7"(BT, + R)+ 521 Tf;}d Y dt.
Vr Vr

—u, + A"+ =P/ p, =0,

—v:+Aﬁv*—lu*—P;/p0 =0,

—PZ*+g(05TT*+aSS*)=0, (32)
—u, —v; -w. =0,

~T AT~y =0,

—S +AS =y ow =0

with boundary and initial conditions (24, (25). Just as in case of the main problem here again we
assume performance of conditions of smoothness of solutions of the conjugate problem.
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Now, let us multiply the equations of the system (19) by p,u", p,v , w ,P", ga,T"/y, and
gagS /s, respectively, then, them we shell combine. After that we multiply the equations of the
conjugate system (32), by p,u, p,v, w, P, ga;T/y;, gasS/ys, respectively, and them com-

bine. Then, the results let's subtract one of another and final expression we shall integrate on time
from O up to ¢, and on area Q. Then, in view of boundary conditions (20) and (24), analogically to

(31), after transformations, we shall receive

If |:p0 (0] u, +vv, )+ gyaf T, +8%.5) s, }d{)—
o T

Vs
* % ga * g(Z *
_J.J.J.{Po (”0”0 +V0V0)+_TT0 T, +_SS()S()}d~Q = (33)
o Yr Vs

tm
= J-ﬂ[ur v, + 84T (pr, + R)+ £ Tf;}d ¥, dt.
0y, }/T ]/T

Let us assume that

a, eciu  t=1,, X=X,y =),

*:aé‘t—t X=X,V — — s
Ir (-1, 0:Y = Yo) {0, eciu  L#FL, ,XF X5,V F Y,

Where
o= V,T37T _
gp

Then, because of 7,_, =T, , we have

IJITMf;dZOdt = aTM[m (%5 ¥0)

0%,
and if we assume that

u, =0, v, =0 , T, =0, S, =0, (34)

by m m m

from (33) for the moment 7=t we have
. . gy -« 8oy .+
TM,m (me’o): _VTJ‘”‘{/DO(”OMO + Vo"o)"'y_TTo Ty +7—SS0S0:|dQ -
Q T

N
[m
—rTj” ut_ +vr,+ S

T
02, T

(35)

Tz:O*(ﬂTB + R)i|d ZO dtm 4

wherer, =y, /ga,a .
In the formula (35) u,,v,,T,,S, are given at the initial moment of time, and u,,v,,7, uS,

are solutions of the conjugate equations (32) at the boundary conditions (24)—(25).
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With the help of the functional (35) it is possible to define the values of temperature anomalies
on the free surface of the ocean. Moreover, to use them is not practically possible, because for each
fixed point (x,,y,)eY, it is necessary to solve the conjugate problem (32), (24), (25). With the

purpose of simplification of the problem, It is expedient to divide the ocean surface >, by several

parts, i.e. we shall assume ., = UZ,,,. , as we shall define average values of temperature anomaly
i=1

in everyone 2., .

For this purpose in (33) we shall assume, that [1]

(04 .
f; _ Z_m5(t_tm)’ lf‘ xﬁyEZOi (36)

0, out of the domain

As our problem is specification of values of a field of anomaly of the temperature, given on the
ocean free surface in each subarea %, therefore first of all follows to define average value of

anomaly of temperature of century X,,. In this connection we shall enter into consideration a desig-
nation for average >, on temperature anomaly at the moment of time 7=¢, as follows:

=20
M

([T, 4

i

tm 201

Then, with taking into account (36), we have

”jTMdez dt = ”jT z—zm)dzodtzzioinrmmdzo —al |

0%,

in view of which and conditions (34) from (33) we shall receive

TAZZ =—7; ”J‘{po (u;uo + v3v0)+ g}/&TO*TO —1-&S(’;S0 }dQ -
T S

(37)

L ﬁ[ 8% (g1, +R)}d20dt.

Vr

Thus, the problem about specification of values of average temperature anomaly was re-
duced to the solution of the conjugated problem (32), (24), (25) under condition of (34).
Now, let’s consider the perturbed equation system:

u +Au' =N+ P/ p,—pu'Au"—vul =0,
v+ AV + '+ P/ py — p'AV' =V =0,

P gl T+ 8')=0,

u, +v, +w. =0, (38)
I'+ AT +y, W — ;AT = v, T, =0,

SI+AS +y W —u;AS' —viS! =0

at following boundary conditions
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rro_ ' o ' r_
vu, __z-xz/pO’sz __Tvz/pO’W _O’

vT! = BT}, -T})-R,vS. =S, (R, +S. —E") onz=0;
u'=0,v'=0,0T"/on=0,08"/on=0 on 2 ; (39)
u, =0,v. =0,w'=0,7'=0,5. =0 on z=H.

As initial we shall accept climatic values
u' =uy, v =v,,T'=17,5" =8, at  t=0. (40)
herer!, =7 _+o7 Ty =T, +06T,,uy =u,+uy,vy =v,+0ov,, T, =T, + T,
Sy =S, +3S,.
Now, let us multiply the equation (38) by the conjugate functions u'p,, v'p,,
w,P ,ga,T /y,and ga S /y,, respectively, corresponding to the not perturbed (climatic)

problem, and let's term by term combine, and the conjugate equations (32) we shall multiply
vipy,w', P', ga,T'/y,,and ga,S'/y, also we shall combine, then results of these operations

ro_
T, =7,.+07

xz 2 yz?

we shall subtract from each other, the result we shall integrate on time in limits from O up to ¢, and

on the area Q. Then, analogically to (37) for each subarea 2., we shall receive the functional

]T'Azf, =—7; J.J.J-{po (u;ug + v;v6)+ £% T, T, + £% S;Sé}dﬂ —
) Vr s

(41)

- thj;”{T;zu* +7v + £% T° (BT + R)}d 2dt.

0, Yr
Taking into account, that

= =20 =20
I i
T’y =Ty + 5(TMIM J

M, f

and subtracting from (41) equality (37), we come to functional for average anomaly of tempera-
ture for each subarea 2., (i=1,2,...,n) at the moment ¢, . Thus, we have

5(??;1; ): — Iﬂ {po (Siagug + Svpv7 )+ %mﬂj + &% 5587 Q-

N

‘ (42)
-7 I”{&rﬂu* +07,v + &% BT 6T, }d 2 dt
0, Vr
and with using the formula
1Z0; > =20
T, =T +6(T | 43)
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we determine the perturbed state of anomaly of temperature in subareas >, (i = 1,...., n) at the
moment ¢, . We define the perturbed state of anomaly of salinity in the subareas >, (i=1,...., n)
at the moment ¢, .

Further the perturbation problem (38)-(40) is salving.
In the boundary conditions on the ocean free surface considered here the specified values for tem-
perature anomaly at the moment ¢, , defined under formula (43) are used.

Besides, the specified values of factors of turbulent diffusion and viscosity ' = u+ du,
VI=V+OV, fyg = g+ 0 and v g =V o +0V, ¢ are used, that essentially raises adequacy
of the results received on the perturbed problem with the existing condition of distribution of geo-
physical fields beforehand specified moment of time ¢, . Thus, certain fields (received as a result of
the solution of the perturbation problem) should be used as the initial data at consideration of prog-
nostic model in the range of time from t =¢,, till some moment of time t = T.

With taking into account (22), the sequence of realization of the algorithm on preparation of
the input information at the initial time ¢ =¢, for the prognostic three-dimensional problem of the

ocean dynamics consists from following stages:
1. On the basis of conjugate equations, the theory of small perturbations and principle of du-
ality, we define values oy, ou; ¢,0v ,6v; ¢ and find

! .
H'=p+0U, frs=Hrs+OUps, VI=VFHOV, Vg =V +0Vps;

2. The problem

op ~
—+A'9=0,
ot 4
=0 at t=0

is solving. Input data used in the boundary conditions are climatic data. The problem is solved to
achive a quasistationary state.
3. Within the time interval 0 <¢ <¢, the problem

88—?+A'¢:Oa ¢:$tm1 at t=0

is solving. The input data used in the boundary conditions on the ocean free surface are climatic
data.
4. In the time interval0 <7 <¢, with consideration subareas >, (i = 1,..,n) n conjugate

problems (32), (24), with initial conditions ut*m = O,v:" = O,Tt: = O,S:m =0are solved. In the
boundary conditions known functions are climatic functions;
5. Let are known the fluxes of heat 6Q, = B(ST,, — T, ) and salt 5Q, = 5S(R: +S, —E*)

on the sea surface and values of o7 _, o7 _, corresponding to wind stress, at any moments of time

xz 2 yz?
previous to prognostic time interval. These values within the time interval 0 <¢<¢ are determined

by solution of problems of atmosphere and ocean dynamics or as a result of direct measurements.
Then, if we solve the problem (38) — (40) in the range of time 0<7<¢, with using of cli-
matic initial data at t = 0 (the solution of the problem from point 3) step by step, the ocean will
adapt to the real perturbations on the sea surface;
6. The functional
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5(??;’,; ): - ([ { poldigu; +dvyve )+ E2L 5T, 17 + %5 55, 8¢ }d@ -
o Vr

N

—r I‘g{é‘fﬂu* +67,v" + g}zT pT._, T, }d 2dt,

and temperature anomaly on the ocean free surface

120 —20i
T, =Ty + 5[T o ]

'm

are calculating.
_ ! _ ! _ ! _ ! : :
Here du, =uy, —u,, ov, =vy,—v,, oI, =1, -T,, oS, =S, —S,, uy,v,.1;,S, are climatic values,

and u, , v, , T, , S; are solutions of the problem from point 5 at the moment ¢, ;

7. The perturbation problem is salving, where in boundary conditions at definition of heat
fluxes on the free surface the function 7, A’f‘” , defined in the previous paragraph, is used. As the ini-

tial data at t = O the solution of the problem from the point 5 is assumed, i.e., uy, =u, , vy =v,

m m

T; =T/ and S; =S, . Further we return to the solution of the problem from point 3. Thus, we cy-

cle calculations for the subsequent specification of values of fields of temperature anomalies on the
free surface of the ocean at the moment ¢, .

At this stage the received solution of the problem for time moment ¢,,i.e., v, , v, , 7' and

S] are used as the initial data for solution of the prognostic model of dynamics of the baroclinic
ocean in the range of time 7, <t <T .

Analogically there is possible to receive functionals for calculation of average anomaly of

Y=Y — i
the salinity S, and S'w, . We have

(gz%fm ): —7; I‘”{po (”0”0 +VyV, )+ g;r 1+ 8% 8! }JQ _
Q T

Vs
, (44)
—r[”{ru vr v + 22 (BT, + R+ 2555, ST (R + S —E*)}d X, dt
0%, ) Vr Vs
and
(§Azfm )z T IH{PO (u{]ug + v{)vg)+ £% T,T, +g—aSS(;S§ }dg -
4
Q T N (45)

- r{if{rn oy +%T*(ﬂTB’ +R)+ g;:s S, SR+ - E*)}d >, dt,

where 1, =y /ga,a,a=v]y /gp.
In this case in boundary conditions (24) on the ocean surface we assume that

Qr =pTy u Q5 =f; at z=0,

where f; is defined analogically to f; .
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Taking into account (44) and (45), analogically to (42), we obtain

5(§§;ﬁ; ): 7 jg[j { po\Sgus + Sv,v )+ %5}‘0%" 8% s5.8: }dQ _

N

_rSIJ;{{arxzu* +oT,V 4 gyoir ST + gy@:S 55,5 (R +5° —E*)}dZodt

and on a formula
S = §% 4 5 S
M, M, n

we define the perturbed state for a salinity anomaly in subareas 2., (i = 1,...., n) at the time moment
t

.
3. Conclusion

The algorithm on the specification of temperature anomalies on the ocean sea surface, considered in
the present article, may be used in numerical calculations of the ocean dynamics.
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O MNOATOTOBKE HAYAJIBHBIX JAaHHBIX JJIA HpOFHOCTI/I‘IeCKOﬁ 3aJavaun
JHHAMHKH 6ap0KJ1]/IHHOFO OKeaHa

Astanaui A. Kopazansze
Pesrome

Kak u3BecTHO, KauecTBO TMAPOPU3NUECKUX MOJEH, MOIyYeHHBIX B Pe3yJbTaTe pealu3aliu
MPOrHOCTUYECKON MOJENU AUHAMHUKU OApOKIMHHOTO OKEaHa, 3HAYMTENBbHO 3aBHCUT OT KayecTBa
BXOJHBIX JaHHBIX. B HacTosmell paboTe, Ha OCHOBE CONPSKEHHBIX YPaBHEHUH M TEOPHUHU
BO3MYIIEHUM TPEATAracTcs aJIrOpUTM YTOYHEHHs JaHHBIX HaOJIIOAEHUI O HECTallMOHAPHBIX
Iporeccax, Y4YacTBYIOIIMX B TIpPaHMYHBIX YCIOBHUAX Ha CBOOOJHON IOBEPXHOCTH MOpPS [Uis
MIPOrHOCTUYECKOHN 3aaun TUHAMHMKH okeaHa. C Ienblo y100CTBa, PACCMOTPEHHBIM B HACTOSIICH
paboTe anropuT™M O MOAIOTOBKE HAYAIBHBIX IAHHBIX, CHAayajla paccMaTpUBAeTCi Ha IMpHUMEpe
JIBYMEPHOTO YypaBHEHHUs1 mNepeHoca-auddy3uu cyOCTaHIMM B BEPTUKAIBHOM IUIOCKOCTH XO0Z, a
3areM JUlsl TPEXMEPHOH 3aaul TMHAMUKH OapOKIMHHOIO OKEaHa.
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