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ABSTRACT 

 

In the paper there are discussed Gaussion statistical structures  Hh  ,,S,E h   in Hilbert space of 

measures. We prove necessary and sufficient conditions for existence of such criterion in Hilbert space of 

measures. 
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Let there is given (E,S) measurable space and on this space there given  Hh  ,h   family of 

probabilitg measures defined on S, The H  set of hypotheses. Thy following definitions are taken from thy 

works ([1]-[5]). 

Definition 1. A statistical structure is is called object  Hh  ,,S,E h   

Definition 2. A statistical structure  Hh  ,,S,E h   is called orthogonal (singular) (O) if thy family of 

probability measures  Hh  ,h   are pairwise singular measures. 

For  Hh  ,h   be probability measures defined on thy measurable space (E,S). For each Hh denote 

by  
h  thy completion of thy measure h  and denote by dom(

h ) thy  -algebra of all 
h -measurable 

subsets of E. 

Let ( )
Hh

h1 domS


 . 

Definition 3. A statistical structure  Hh  ,,S,E h1   is called strongly separable if there exists                        

thy family of  1S  - measures sets  Hh  ,Zh   such that the relations are fulfilled:
 
 

1) ( ) H;h   ,1Zah =  

2) H;h   ZZ
21 hh =  

3) .EZ
Hh

h =


  

Definition 4. We consider the concept of the hypothesis as any assumption that determines the form of the 

distribution of the population.   

Let H be set of hypotheses and B(H) be  -algebra of subsets of H which contains all finite subsets of H. 

Definition 5. We will say that the statistical structure  Hh  ,,S,E h  admits a consistent criterion 

(CC)  for testing  hypothesis if there exists at least one  measurable mapping 

( ) ( ),)H(B,HS,E: →  

Such that 

 ( ) H.h   ,1h)x(:xh ==  
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Remark 1. The notion and corresponding construction of consistent criterion for testing hypotheses was 

introduced and sudid by Z. Zerakidze (see [5]). 

Let  
M  be real linear space of all alternating finite measures on S. 

Definition 6. A linear subset  
 MM H  is called a Hilbert space of measures if: 

1) On HM  one can introduce the scalar product ( ) HM,  ,,   with respect to which HM is the 

Hilbert space and for all mutually singular measures    and  , HMv,  ,  the scalar product ( ) ;0, =  

2) If  1f(x)  and  MH   then   =
A

Hf M)dx()x(f)A( ,  where f(x) is S-measurable real 

function and  ( ) ( ) ,, ff ; 

If   MHn  , n >0,  )E(n ,  n=1,2,…. And 
0n 

 then for any HM  0)(Lim n
n

=
→

. 

Remark 2. The notion and corresponding construction of consistent criterion  of the Hilbert space of 

measures was  introduced and sudid by Z.Zerakidze (see [4]). 

Let Hh  R,T    t),,t()t(),t( hh +=  

Gaussian real processes, where T  be closed bounded subset of R, with zero means  

T     t),t(),t(E   ,0)),t((E hh ==  and correlation function 

( ) )kt(R),k(),t(E),k(),t(E hh −==  
Card H=continuum. Let Hh,

h
 , card (H)=c be the corresponding probability measures given on S 

and Hh,R),(fh   spectral measures densities such that relations are fulfilled: 

H,h    ,)1(C)(fK)1( N2

hhh

N2 ++ −−
 where hK   and Hh,Ch  are positive constants. We 

shall assume that the functions itself or its derivatives  satisfies conditions: 
+

−

= dt)]t([ )m(

h  
Hh

,    

m=0,1,2,…..n. 

Then the corresponding probability measures 1h  and 2h  are pairwise orthogonal 

Hhh   ,h,h 2121 
  (see[1]) and  Hh  ,,S,E

h
1  , CardH=C are Gaussian orthogonal ststionary 

statistical structures. Next we consider S-measurable 
Hh  ),x(gh 

 functions, such that 




 
h

h

Ih E

2

h )dx(|)x(g|
where 

HIh   a countable subsets in H. Let hM
 the set measures defined by 

formula  
= )B( 




h

h

Ih B

h )dx()x(g
,  define a scalar product by formula 

 


=

2h1h

h

IIh B

2

h

1

h21 )dx()x(g)x(g   ),(


  where  HI
1h  , HI

2
h   a countable subsects in H. 

1. We will show  HM
 is Hilbert space. 

Let  


=
h

h

Ih B

hn )dx()x(g)B(

 
Here   HI

nh  , n=1,2,….a couutable subsets is H and n is fundament sequence in HM . Let  




=


1n

h cICard    ,II
n

 

So the Gaussian orthogonal statistical structure  Hh  ,,S,E
h

  is strongly separable statistical 

structure the instead of this functional  )hh ,C(C  )x(I)x(g hhC

n

h h
=  then 

 


 =
Ih CB

n

hn

h

h
N,n    ),dx()x(g)B(


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Let 


 =
Ih

n

h

n

I )x(g)x(g , 

It is clear, that 

  −=− ).dx()x(g)x(g I

m

I

n

I

2

mn

 

As will as )(L I

2
   space is complete space, then exists such function  )x(gn

I    thet 

 

  

   )dx()x(g I

2

I

  

.n,)dx()x(g)x(g I

m

I

n

I →→− 

 

Let   


 →→=
Ih B

nCIn .n ,,-   ),dx()x(I)x(g)B(
hi

 

2. If  


=
Ih B

h    ),dx()x(g)B(
h

then 


 ==
0

h

Ih B

oh

B

f  HI  ),dx()x(g)x(f)dx()x(f)B( and 

so ,1)x(f   then 






 ==
0

h

0

h

Ih

2

h

Ih

2

hff    ).,()dx()x(g   ),dx()x(g)x(f),(  

3.  Let HI,I   ),dx()x(f   ),dx()x(g 21

Ih

i

Ih

h

2

h

1

h
== 







  and .⊥  

Let 213 III =  and 






=
= ji       if     ,0

ji        if     ,1
)C(

jih h     , i,j ji   CC  ,I
ji hh3 =    

As 


=⊥
3Ih

hh 0)x(f)x(g  almost everywhere with respect 
3I  and 

  ==


 0)dx()x(f)x(g),(
3

h

Ih

hh

 

4. 

4. Let  Hn H  , ,0n  ,0n  ,)E(n  then 

 


 =
n

hh

Ih B

H

)n(

n   Nn   M)dx()x(g)B( can be considered

 

0gn

h
  and 

 
 

 ==
' '

hhhhh

Ih B Ih

)x(C

2
)n(

nn

)n(

n )dx(I)x(g),(),dx()x(g)B( and .o),( nn →  

We will show that HM  is Hilbert space of measures. 

We denote by  F=F( HM )  the set of real functions f such )dx()x(f
h

  is defined  .MHh
   

Let  )(HM h2
Hh

H =


be the Hilbert space of measures    1S     )(domS
Hh

1 h


=      E is the complete 

separable metric space and     the Borel  -algebra  in E and cardHC. 

Thenthe following theorem holds: 

Theorem. In order that the orthogonal stationary  Gaussian Statistical structure   Hh  ,,S,E
h

1     card  

HC admits a consistent criterion for testing hypothesis in the theory  (ZFC)   (MA)      it is necessary and 

sufficient that the correspondence   ))M(Ff(f Hf   , given by the formula 

Hf

E

M  ),,()dx()x(f
hhh
=   was be one-to-one. 

Prof. Necessity. The existence of a consistent criterion for testing hypotheses   ))H(B,H()S,E(: 1 →  : 

Implies that H.h  ,1})h)x(:x({
h

==   Setting  h)x(:x{Xh ==  for .Hh  we get: 

1)  H;h  ,1})h)x(:x({)X(
hh h ===   

2)  ;Hh,h  ,h h   ,XX 2121
2h1h

=   

3)  ,E}h)x(:x{X
Hh

h


 =  
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Therefore the statistical structure    Hh  ,,S,E
h

1    is strongly  separable, hence, there exists    1S - 

measurable sets     HhX   ,h   such that 







=
=  hh       if     ,0

hh        if     ,1
)X( hh

 

Let the function F)x(I
h

X    corresponds    to ).(H
hh 2             

Then ).,()dx()x(I)x(I)dx()x(I
hhhhhhh

XXX  ==   

Let the function   )x(I)x(f)x(f
h1 x1=    corresponds  to    ).(H

h21   

Then for every   )(H
h22  : 

).,()dx()x(f)x(f)dx()x(I)x(I)x(f)x(f)dx()x(f)x(f 2121xx21 hhhhh21

===    

Further, let the function    


=
Hh

h    )dx()x(g)x(f
h

.   Then fort each   .MH1 , such that 

 


=

1f

hh

Hh

1

1    )dx()x(g , we have 

).,()dx()x(g)x(g)dx()x(g)x(g)dx()x(f 21

HHh

1

h

HHh

1

h1

1ff

h2h

1ff

2
===  





 

 

From this discussion it follows that the above – indicated correspondence puts some function into 

correspondence puts some function  ).M(Ff B   into correspondence to each   Hf M   if we  identify in 

F (MH) the functions coinciding with respect to the measure  Hh   ,
h

 , then this correspondence will be 

bijective. 

Sufficiency. Let   )M(Ff H     corresponds to HM
h
    for wich   ),()dx()x(f

hhh  = , then  

for  every   
h

 , HM
h
 .  ).dx()x(f)x(f)dx()x(f)x(f),()dx()x(f

hhhhh 2h21h  ===  
 

 

So )x(f)x(f 1h =       almost everywhere with respect to the measure 
h

 and   0fh   ,      

+ )dx()x(f
hh

2
  .   If    )dx()x(f

hhh




= 
   then hh,0),()dx()x(f

hhh
==

 



 .  On 

the other hand  0)XE( hh
=−  , where   .}h)x(f:x{X hh == 

 

 Hence it follows that  







=
=  hh       if     ,0

hh        if     ,1
)X( hh

 

Therefore the statistical structure    Hh  ,,S,E
h

1   Is weakly separable, we represent  Hh  ,
h

 ,  

CcardH  as an inductive sequence    Hh  ,
h

 ,    where     W!  denotes the first ordinal number of the 

power of  the  set  H. 

Since the statistical structure   Hh  ,,S,E
h

1    is weakly separable, there exists the family of   S1 -- 

measurable  sets   HhXh,     such that for all    )[0,h 1  we have: 







=
=  hh       if     ,0

hh        if     ,1
)X( hh

 

We define  W1 sequence Zh of parts of the space E such that the following relations hold: 



9 
 

1)   Zh  is Borel subset of E for alle h<w1; 

2)   Zh  Xh  for all   h<w1; 

3)    Zh   Zh’   =       for all    h< w1, h’<w1;    h   h’  ; 

 4)  
h

 ( Zh) = 1  for all   h<w1;  

Suppose that  
00 hh XZ = . Suppose further that the partial sequence   hhh }Z{    is already  defined for   h<w1 .  

It is clear that  0)Z(
hh

h =




  . Thus there exists a Borel subset  nY  of the space  E such  that the    following   

relations valid: h

hh

h YZ 


   and  0)Y( h =
 

Assuming that  Zh = Xh -   Yh ,  we construct the w1  sequence  
1hh}Z{     of disjunctive measurable subsets of 

the space  E. therefore 1h h  1)Z(
h

=  and  the  statistical  structure   Hh  ,,S,E
h

1 
, cardHC     is 

strongly   separable  because there  exists a family of  elements  of  the    - algebra  
Hh

1 )(domS
h



=   such  that: 

1) Hh  1)Z( hh
=  

2) Zh   Zh’   =       ;Hhh,h,h   

3) EZ
Hh

h =


 , 

For  Ex , we put h)x( = , where h is the unique hypothesis from the set H  for which  hZx . The 

existence of such a unique hypothesis H  can be proved using condition 2), 3). 

Now let  )H(BY . Then   
Yh

hZYxx


=)(: . 

We mosr show that   ( )
0h

domY)x(:x   for each Hh0  . 

If  Yh 0 , Then   ( )
 














==

−

 
0

0

hYh

hh

Yh

h ZZZY)x(:x . 

On the one round, from the validity of the conditions 1), 2), 3) it follows that 

 ( ) ( )
0hh0

domdomSZ
Hh

1h 



 =   

h  The ofter round, the vaidaty of the condition  

 

)(
0

0

h

hYh

h ZEZ −
−

  

Imlies that 

 

0Z
0

0h

hYh

h =















−

  , 

The last equality yelds that  
 

),(domZ
0h

0hYh

h 

−

  

 Sience )(dom
0h

  is  a    - algebra, we deduce that  

  ( )
 

)(domZZY)x(:x
0h

0

0

hYh

hh 

−















=   
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If  Yh0  , then   )ZE(ZY)x(:x
0h

Yh

h −=


  

And we conclude that    0Y)x(:x
0h

=  

The last  relation impies that 

  )(domY)x(:x
0h

 , 

Trus we have show the validaty of the relation  

  )(domY)x(:x
0h

  

For  an arbitrary  Hh 0 , Hence 

  ( ) 1

Hh

SdomY)x(:x
h
=



 . 

We have show that the map ( ))H(B,H)S,E(: 1 →  is measurable map and we asception that 

  1)Z(h)x(:x hh0h
=== 
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