Thy Consistent Criterion for Homogeneous Gaussion Fields Statistical Structures

¹Zurab S. Zerakidze, ²Jemal K. Kiria, ²Tengiz V. Kiria, ³Ivane N. Loladze

¹Gori State Teaching University, zura.zerakidze@mail.ru

²M. Nodia Institute of Geophysics of I. Javakhishvili Tbilisi State University, Kiria8@gmal.com

³Georgian American University

ABSTRACT

In the paper there are discussed Gaussian fields Statistical Structures $\left\{E,S,\mu_h,\ h\in H\right\}$ in Banach Space of measures, we prove necessary and sufficient conditions for existence of such criterion in Banach space of measures.

Key words: consistent criterion, orthogonal, straggly separable Statistical structures.

Classification cocles 62H05, 62H12.

Let there is given (E,S) measurable space and on this space there given $\{\mu_h, h \in H\}$ family of probabilitg measures defined on S, The H set of hypotheses. Thy following definitions are taken from thy works ([1]-[5]).

Definition 1. A statistical structure is is called object $\left\{ E,S,\mu_{h}\text{, }h\in H\right\}$

Definition 2. A statistical structure $\left\{E,S,\mu_h,\ h\in H\right\}$ is called orthogonal (singular) (O) if thy family of probability measures $\left\{\mu_h,\ h\in H\right\}$ are pairwise singular measures.

For $\left\{\mu_h,\ h\in H\right\}$ be probability measures defined on thy measurable space (E,S). For each $h\in H$ denote by $\stackrel{-}{\mu_h}$ thy completion of thy measure μ_h and denote by $dom(\stackrel{-}{\mu_h})$ thy σ -algebra of all $\stackrel{-}{\mu_h}$ -measurable subsets of E.

Let
$$S_1 \bigcap_{h \in H} dom(\overline{\mu}_h)$$
.

Definition 3. A statistical structure $\left\{E,S_1,\overline{\mu}_h,\ h\in H\right\}$ is called strongly separable if there exists thy family of S_1 - measures sets $\left\{Z_h,\ h\in H\right\}$ such that the relations are fulfilled:

- 1) $\overline{\mu}_h(Z_a) = 1$, $\forall h \in H$;
- $2) \quad Z_{h_1} \cap Z_{h_2} = \emptyset \quad \forall h \in H;$
- $3) \quad \bigcup_{h \in H} Z_h = E.$

Definition 4. We consider the concept of the hypothesis as any assumption that determines the form of the distribution of the population.

Let H be set of hypotheses and B(H) be σ -algebra of subsets of H which contains all finite subsets of H. Definition 5. We will say that the statistical structure $\{E,S,\mu_h,h\in H\}$ admits a consistent criterion (CC) for testing hypothesis if there exists at least one measurable mapping

$$\delta: (E,S) \rightarrow (H,B(H)),$$

Such that

$$\mu_h(\lbrace x:\delta(x)=h\rbrace)=1, \forall h\in H.$$

Remark 1. The notion and corresponding construction of consistent criterion for testing hypotheses was introduced and sudid by Z.Zerakidze (see [5]).

Let M^{σ} be real linear space of all alternating finite measures on S.

Definition 6. A linear subset $M_B \subset M^{\sigma}$ is called a Banach space of measures if:

- 1) A norm can be defined on M_B so that M_B will be a Banach space with respect to this norm and for are orthogonal measures $\mu, \nu \in M_B$ and real number $\lambda \neq 0$ the enequality $\|\mu + \lambda \nu\| \ge \|\mu\|$ is fulfielled;
- 2) If $\mu \in M_B$, $|f(x)| \le 1$ then $v_f(A) = \int_A f(x)\mu(dx) \in M_B$ and $||v_f|| \ge ||\mu||$;
- 3) If $\nu_n \in M_B$, $\nu_n \ge 0$, $\nu_n(E) < +\infty$, n = 1, 2, ... and $\nu_n \downarrow 0$ then for any linear functional $l^* \in M_B^*$ $\lim_{n \to \infty} l^*(\nu_n) = 0$, where M_B^* conjugate to M_B linear space.

Remark 2. The definition and construction of the Banach Space of measures is studied Z.Zerakidze (see [4]).

$$\left\{ \left\{ \boldsymbol{x}_{h}\right\} _{h\in H},\boldsymbol{x}_{h}\in \boldsymbol{M}_{B_{h}},\sum_{_{h\in H}}\left\Vert \boldsymbol{x}_{h}\right\Vert _{\boldsymbol{M}_{B_{h}}}<\infty\right\} .$$

Then the M_B with norm $\|\{x_h\}_{h\in H}\| = \sum_{h\in H} \|x_h\|_{M_{B_h}} < \infty$ is the Banach spase. It is toeeled the direct sum

of Banach spaces M_{B_h} and denoted so $M_{B}=\mathop{\oplus}_{h\in H}M_{B_h}$

The following theorem has also been proved in the paper (see [4]).

Theorem 1. Let M_B be a Banach space of measures, then in M_B there exists a family of pairwise orthogonal probability measures $\left\{\mu_h,h\in H\right\}$ such that $M_B=\mathop{\oplus}_{h\in H}M_{B_h}$, where M_{B_h} is Banach space of elements V of the norm:

$$\nu(B) = \int_{B} f(x) \mu_{h}(dx), \quad B \in S, \quad \int_{E} |f(x)| \mu_{h}(dx) < \infty, \quad \|\nu\|_{M_{B_{h}}} = \int_{E} |f(x)| \mu_{h}(dx)$$

Let $t = (t_1, t_2,, t_n) \in T$, where T be closed boundet subset of $R^n, \xi_h(t, \omega), t \in T, \forall h \in H$ Gaussian real homogenous field on T with rero means $E[\xi_h(t, \omega)] = 0, \forall h \in H$, and correlation function $E[\xi_h(t, \omega), \xi_h(s, \omega)] = R_h(t-S), t, S \in T, h \in H$.

Let $\left\{\mu_h,\ h\in H\right\}$ be the corresponding probability measures given on S and $f_h(\lambda), \lambda\in R^n,\ \forall h\in H$ be spectral densities.

We be called the Fourier transformation generation Fouer transformation. Let

$$\iint_{R^n} \frac{\left|b_{h,h'}(\lambda,\mu)\right|^2}{f_h(\lambda)f_h(\mu)} \, d\lambda d\mu = +\infty, \quad \forall h,h' \in H, \qquad \qquad \text{where} \qquad b_{h,h'}(\lambda,\mu), \ \lambda,\mu \in R^n, \ \forall h,h' \in H \ \text{the}$$

generalization Fouer transformation of the following function

$$b_{h,h'}(s,t) = R_h(s,t) - R_{h'}(s,t), s,t \in T, \forall h,h' \in H.$$

Then the corresponding probability measures μ_h and $\mu_{h'}$ are pairwise orthogonal $\forall h, h' \in H$ (see [6]) and $\{E, S, \mu_h, h \in H\}$ are Gaussian orthogonal homogeneous fields statistical structures. Next, we consides S – measurable $g_h(x)$, $\forall h \in H$, functions such that

$$\sum_{h \in H} \int_{E} \! \left| g_{_h}(x) \right| \! \mu_{_h}(dx) < + \infty$$

Let M_B the set measures defined by formula $\nu(B) = \sum_{h \in I_h} \int_B |g_h(x)| \mu_h(dx)$, where $I_h \subset H$

 $\left\|\nu\right\| = \sum_{h \in I_h} \int_F \left|g_h\left(x\right)\right| \mu_h\left(dx\right) \text{, then } M_B \text{ is a Banach space of Measures and } M_B = \bigoplus_{h \in H} M_{B_h} \text{, where } M_{B_h} \text{ is a Banach space of Measures}$

Banach space of elements the norm $\nu(B)=\int\limits_{B}g(x)\mu_{h}(dx), \quad B\in S, \quad \int\limits_{E}\left|g_{h}(x)\right|\mu_{h}(dx)<\infty,$

with the norm on M_{B_h} , $\left\|v\right\|_{M_{B_h}}=\int\limits_F\left|g_h(x)\right|^-\overline{\mu}_h(dx)$

Let E is the complete separable metric space and $S_1 = \bigcap_{h \in H} dom(\overline{\mu}_h) \quad \text{ the Borel} \quad \sigma \text{ - algebra in E}$ and card $H \leq C$.

Then the following theorem holds:

Theorem 2. In order that the orthogonal Homogeneous Gaussian Fields statistical structure $\left\{E,S_1,\overline{\mu}_h,\ h\in H\right\}$, card $H\leq C$ admits a consistent criterion for testing hypothesis in the theory (ZFC)&(MA) it is necessary and sufficient that the correspondence $f\to l_f$ defined by the equality $\int\limits_E \left|g_h(x)\right|^-_{\mu_h}(dx)=l_f(\mu_h) \quad \text{is one-to-one. Here } l_f \quad \text{is a linear continuous functional on } M_B,\ f\in F(M_B)$

Denote by $F = F(M_B)$ the set or real functions f for which $\int_E f(x) \overline{\mu}_h(dx)$ is defined $\forall \overline{\mu}_h \in M_{B'}$

Prof Necessity. The existence of a constituent criterion for testing hypothesis $\delta: (E, S_1) \to (H, B(H))$ Implies that $(\forall h)(h \in H \to \overset{-}{\mu}_h(\{x : \delta(x) = h\}) = 1$

Setting $x_h = \{x : \delta(x) = h\}$ for $\forall h \in H$, we get:

1) $\bar{\mu}_h(x_h) = \bar{\mu}_h(\{x : \delta(x) = h\}) = 1, \forall h \in H$

2) $x_h \cap x_{h'} = \emptyset$, $\forall h = h'$, h = h', $h, h' \in H$; because $x_h = (\{x : \delta(x) = h\}) \cap (\{x : \delta(x) = h'\}) = \emptyset$; $0 \in A$

Therefore a statistical structure $\{E,S,\overline{\mu}_h,\ h\in H\}$ is strongly separable, so there exist S_1 - measurable sets $\{x_h\}, \forall h\in H$ such that

$$\overline{\mu}_{h}(x_{h'}) = \begin{cases} 1, & \text{if } h = h' \\ 0, & \text{if } h \neq h' \end{cases}$$

We put the linear continuous functional l_{x_h} into the correspondence to a function $I_{x_h}(x) \in F(M_B)$ by the formula: $\int_E I_{x_h}(x) \overline{\mu}_h(dx) = |\overline{\mu}_h|_{M_{B_h}}$

We put the linear continuous functional $l_{\tilde{f_1}}$ into the correspondence to a function $\tilde{f_1}(x) = f_1(x)I_{x_h}(x)$.

Then for
$$\mu_{h'} = M_R(\mu_h)$$

$$\int\limits_{E}^{\tilde{f}_{1}}(x)\overline{\mu}_{h'}(dx) = \int\limits_{E}^{\tilde{f}_{1}}(x)I_{x_{h}}(x)\overline{\mu}_{h'}(dx) = \int\limits_{E}^{\tilde{f}_{1}}(x)f_{1}(x)I_{x_{h}}(x)\overline{\mu}_{h}(dx) = I_{\tilde{f}_{1}}(\overline{\mu}_{h'}) = \left\|\overline{\mu}_{h'}\right\|_{M_{B_{h}}}$$

Let \sum be the collection of extensions of functional satisfying the condition $l_f \leq p(x)$ on those supspaces where they are defined.

Let us intraduce on \sum a partial ordering having assumed $l_{f_1} < l_{f_2}$ if l_{f_2} is defined on large set then l_{f_1} and $l_{f_1} = l_{f_2}$ there where both of them are defined.

It is obvious, that $l_{f_h} < l_f$. Since any linearly ordered subset in \sum has an upper bound by vintue of Chorn's lemma \sum contains a maximal element λ defined on some set x' satisfying the condition $\lambda(x) \le p(x)$ for $x \in X'$. But X' must coincide with the entire space M_B because otherwise. We could extended λ to a wider space by adding as above one more dimension. This contradicts the maximality of λ hence $X' = M_B$. Therefore the extension of the functional is defined everywhere. The extension of the functional is defined everywhere.

It we put the linear continuous functional $l_{\rm f}$ into correspondence to the function

$$\begin{split} &f(x) = \sum_E g_h(x) I_{x_h}(x) \in F(M_B) \text{ then obtain } &\int_E f_1(x) \overline{\mu}_h(dx) = \left\|\overline{\mu}\right\| = \sum_{h \in H} \left\|\overline{\mu}_h\right\|_{M_{B_h}} \text{, where } \\ &\overline{\mu}(B) = \sum_{h \in H} \int_B g_h(x) \overline{\mu}_h(dx), \quad B \in S \,. \end{split}$$

From this discussion it follows that the above-indicated correspondence puts some function $f \in F(M_B)$ into correspondence to each $\psi_f \in M_B$ if we identify in $F(M_B)$ the functions coinciding with respect to the measure $\mu_h, h \in H$, then this correspondence will be bijective.

The necessity is proved.

Sufficiency. For $f \in F(M_B)$ we define linear continuous functional by the equality $\int f(x) \dot{\overline{\mu}}(dx) = l_f(\dot{\overline{\mu}}).$

Denote I_f a countable subset in H for wich $\int_E f(x) \mu_h(dx) = 0$ for $h \notin I_f$

Let us consider functional $\ l_{f_h}$ on $\ M_{B_h}$ to which corresponds.

Then for μ_{h_1} , $\mu_{h_2} \in M_{B_k}$ have

$$\int\limits_E f_{h_1}(x) \overline{\mu}_{h_2}(dx) = \int\limits_{f_{h_1}} (\overline{\mu}_{h_2}) = \int\limits_E f_1(x) f_2(x) \overline{\mu}_{h_1}(dx) = \int\limits_E f_{h_1}(x) \mu_{h_1}(dx) \quad \text{therefore } f_{h_1} = f_1 \text{ with respect measure } \overline{\mu}_{h_1}. \text{ Let } f_h > 0 \quad \text{a. e. wich Respect to the measure } \overline{\mu}_{h} \quad \text{and } \int\limits_E f_h(x) \overline{\mu}_h(dx) < \infty,$$

$$\overline{\mu}_h(c) = \int_c f_h(x) \overline{\mu}_h(dx), \text{ then}$$

$$\int\limits_{E}f_{h}\left(x\right)\overset{\circ}{\mu_{h}}\left(dx\right)=l_{f_{h}}\overset{\circ}{\left(\mu_{h'}\right)}=0\ \forall h\neq h'.$$

$$\text{Denote} \quad C_h = \{x: f_h(x) > 0\} \,, \, \text{then} \, \int\limits_E f_h(x) \, \overset{-}{\mu_{h'}}(dx) = 0 \quad \forall h \neq h'.$$

Heuce it follows that $\overline{\mu}_h(C_{h'}) = 0$, $\forall h \neq h'$. On the other hand $\overline{\mu}_h(E - C_h) = 0$, therefore the statistical structure $\left\{E, S_1, \overline{\mu}_h, h \in H\right\}$ is weakly separable. We represent $\left\{\overline{\mu}_h, h \in H\right\}$, $CardH \leq C$ as an inductive sequence $\left\{\overline{\mu}_h h < \omega_1\right\}$, where ω_1 denotes the first ordinal number of the power of the set H.

Since the statistical structure $\left\{E,S_1,\overline{\mu_h},\ h\in H\right\}$ is weakly separable, there exists the family of S_1 - measurable sets $\left\{X_h,\ h\in H\right\}$ such that for all

 $h \in [0, \omega_1]$ we have:

We define ω_1 sequence of parts of the space Z_h such that the following relations hold:

- 1) Z_h is borel subset of E for all $h < \omega_1$;
- 2) $Z_h \subset X_h$ for all $h < \omega_1$;
- 3) $Z_h \cap Z_{h'} = \emptyset$ for all $h < \omega_1$, $h, h' < \omega_1$, $h \neq h'$;
- 4) $\overline{\mu}_h(Z_h) = 1$ for all $h \le \omega_1$.

Suppose that $Z_{h_0}=X_{h_0}$. Suppose further that the partial sequence $\{Z_{h'}\}_{_{h' < h}}$ is already defined for $h < \omega_1$.

It is clear that $\mu^{\bullet}(\bigcup_{h' < h} Z_{h'}) = 0 \ (\text{see [3]} \). \ \text{Thus there exists a Borel subset} \ Y_h \ \text{of the space} \ E \ \text{such that}$ the following relations valid: $\bigcup_{h' < h} Z_{h'} \subset Y_h \ \text{and} \ \mu^{\bullet}(Y_h) = 0$

Assuming that $Z_h = X_h - Y_h$, we construct the ω_1 sequence $\left\{Z_h\right\}_{h < \omega_1}$ of disjunctive measurable subsets of the space E. Therefore $\mu_h(Z_h) = 1, \forall h < \omega_1$ and the statistical structure $\left\{E, S_1, \overline{\mu_h}, \ h \in H\right\}$, $CardH \leq C$ is strongly separable because there exists a family of elements of the σ -algebra $S_1 = \bigcap_{h \in H} dom(\overline{\mu_h})$

such that:

- 1) $\overline{\mu}_h(Z_h) = 1$, $\forall h \in H$;
- 2) $Z_h \cap Z_{h'} = \emptyset \quad \forall h, h' \ h \neq h' \in H;$
- 3) $\bigcup_{h \in H} Z_h = E$. . .

For $x \in E$, we put $\delta(x) = h$, whore h is the unique hypothesis from the set H for which $x \in Z_h$. The existence of such a unique hypothesis H can be proved using conditions 2), 3).

Now let
$$Y \in B(H)$$
 . Then $\{x: \delta(x) \in Y\} = \bigcup_{h \in H} Z_h$.

We must show that $\{x:\delta(x)\in Y\}\in dom(\stackrel{-}{\mu}_{h_0})$ for each If $h_0\in Y$, then On the one hand, from the validity of conditions 1), 2), 3) it follows that $Z_{h_0}\in S_1=\bigcap_{h\in H}dom(\stackrel{-}{\mu}_h)\subseteq dom(\stackrel{-}{\mu}_{h_0})$

Implies that

$$\overline{\mu}_{h_0}(\bigcup_{h \in Y - \{h_0\}} Z_h) = 0$$

The last equality yields that $\bigcup_{h \in Y} Z_h \in dom(\overline{\mu}_{h_0})$.

Since $dom(\overset{-}{\mu_{h_0}})$ is σ - algebra, we deduce that $\{x:\delta(x)\in Y\}=(Z_{h_0})\bigcup(\bigcup_{h\in Y-\{h_0\}}Z_h)\in dom(\overset{-}{\mu_{h_0}})$

If $h_0 \notin Y$, then

$$\{x:\delta(x)\,{\in}\,Y\})=\bigcup_{h\in Y}Z_h\subseteq(E\,{-}\,Z_{h_0})$$

and we conclude that $\stackrel{-}{\mu}_{h_0}(\{x:\delta(x)\in Y\})=0$.

The last relation implies that $\{x : \delta(x) \in Y\}$) $\in dom(\overline{\mu}_{h_0})$

Thus we have shown the validaty of the relation $\{x : \delta(x) \in Y\} \in dom(\overline{\mu}_{h_0})$ for an arbitrary $h_0 \in H$.

Heuce
$$\{x : \delta(x) \in Y\} \in \bigcap_{h \in H} (dom(\overline{\mu}_h)) = S_1$$

We have shown that the nap: $\delta: (E,S_1) \rightarrow (H,B(H))$

Is measurable map and we ascertain that $\stackrel{-}{\mu}_h(\{x:\delta(x)=h\})=\stackrel{-}{\mu}_h(Z_h)=1, \ \forall h\in H.$

Theorem is proved.

References

- [1] Ibramhalilov I., Skorokhod A. Consistent estimators of parameters of random processes. Naukova Dumka, Kiev, 1980.
- [2] Kharazishvili A. Topological aspects of measures theory. Naukova Dumka, Kiev, 1984.
- [3] Zerakidze Z. On weakly separated and separated families of probability measures. Bull. Acad. Sci. Georg. SSR, 1984, pp. 273-275.
- [4] Zerakidze Z. Banach space of measures. In Grigelionics B. at (ats) Probality theory and Mathematical Statistics Prosseding of the Fifth Couference. Vilnius. Vol. 2, VSP/Mokslas, 1991, pp. 609-616.
- [5] Zerakidze Z., Mumladze M. Statistical structures and consistent criteries for checking hypotheses. Saarbrucken. Deutshland. Lambert Academic Publishing, 2015.

[6] Zerakidze Z. About the conditions eguivalence of Gaussian measures corresponding to homogenous fiels. Works of Tbilisi State University. Vol. 2, 1969, pp. 215-220.

თანმიმდევრული კრიტერიუმები ჰომოგენური გაუსის ველების სტატისტიკურ სტრუქტურებისთვის

ზ. ზერაკიძე, დ. ქირია, თ. ქირია, ი. ლოლაძე

რეზიუმე

ნაშრომში განიხილება გაუსის ველები სტატისტიკური სტრუქტურებისთვის ბანახის ზომათა სივრცეში, ვამტკიცებთ აუცილებელ და საკმარის პირობებს ამ კრიტერიუმების არსებობისათვის ბანახის ზომათა სივრცეში.

Последовательный критерий для статистических структур однородных Гауссовых полей

3. Зеракидзе, Д. Кирия, Т. Кирия, И. Лоладзе

Резюме

В статье обсуждаются статистические структуры Гауссовских полей в Банаховом пространстве мер, доказываются необходимые и достаточные условия существования такого критерия в Банаховом пространстве мер.