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ABSTRACT

Bubble growing process is considered theoretically when bubble consists saturated vapour of liquid and
when we have vapour-gas bubble on the base of generalized Rayleigh-Plesset equation. For this purpose we
use variational method with help of which we seek for those cases corresponding Euler-Poisson equations
integral curves. Obtained EP- equations allow us to find extremals of our variational task. In conclusion, the
Rayleigh-Taylor instability is considered general case of nonspherical perturbances for spherical bubbles and
the case of the radial perturbances of bubbles.
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Brief report
1. Here we will proceed from generalized equation of Rayleigh-Plesset equation for description of bubbles
dynamics [1]:
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where R is radius of vapour bubble, t is time, p;(t)is a pressure of saturated vapour in the bubble, p, (t) is

a pressure in the liquid, p, is the saturated liquid density, v is the kinematic viscosity of liquid, o is the

surface tension of the bubble.
Having integral from both sides of the equation (1) over the time,
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and reprisent it in the form of functional

ty
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and the touch over R denotes dR/dt.
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Let investigate on extremum functional (3) where the function F is supposed to be differentiate two times

with respect to the time t at the boundary conditions:

R(t,) =R,, R'(t,) =Ry, R"(t,) =Ry; R(t,)=R,, R'(t;))=R], R"(t,) =R/ .

By means of the functional variation on the curve realizing extremum we obtain:
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On arbitrary choice of JR, because of continuity of the expression in brackets with respect to time on the

same curve R(t), we obtain Euler-Poisson’s equation
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After determination all values introducing in equation (7)
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and substitution (8) into equation (7) we have following equation
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After comparing equation (1) and (9) we obtain quadratic equation for R’
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and its roots
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It is evident that the positive root gives less values of growth of the bubble, than according absolute value the

F..

— R" , (8)

negative root, which corresponds to fast decrease of bubble (with following collapse). In the first case, the
bubble grows because of diffusion of vapour from the outside (naturally, under heating). In the second case
(when the source of heating is switched off) there the condensation of vapour takes place in the bubble and

the former diminishes at once.

Similar analysis may be provided on the basis of Euler-Poisson’s equation for evolution of vapour-gas

bubble.

2. Above-considered equations were connected with pure liquid and the bubbles contained only vapour of
that liquid. In general case the bubbles contain some quantity of contaminant gas, whose partial pressure is
Pg, at some reference size, Ro, and temperature, T., and, if there is no appreciable mass transfer of gas to or

from the liquid, it follows that for polytropic process
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Having substitute equation (12) into (1), we obtain the Rayleigh-Plesset equation in the following general
form, [2]:
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After transference the second term from the left side of this equation to the right side, investigate on extremum
corresponding functional (3), having made successively the operations (5)-(8), we obtain (for k = 1, isothermal
process):
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After substituting of the equation (14 into (7), we obtain
R?R"=-2% 43 G2, (15)
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where G = h Rg. In the absence of the gas contamination in the bubble, instead of equation (15) we have
PL

the equation for extremal of pure vapour integral (9). Joint solution of the equations (13) and (15) yields
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It is evident, that when the bubble consists only the vapour of liquid, then G = 0, and the equation (16)
coincides with the equation (10). At last, the integration of the equations (10) and (16) will allowed us to find
the extremals of this variational task.

3. Among others, the stability to nonspherical disturbances has been investigated from a purely
hydrodynamic point of view by Birkhoff (1954) and Plesset and Mitchell (1956), [1]. These analyses
essentially examine the spherical equivalent of the Rayleigh-Taylor instability; they do not include thermal
effects. If the inertia of the gas in the bubble is assumed to be negligible, then the amplitude, a(t), of a

spherical harmonic distortion of order n (n > 1) will be governed by the equation
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It is clear from (17) that the most unstable circumstances occur when dR/dt < 0 and d?R/dt? > 0. These
conditions will be met just prior to be rebound of a collapsing cavity. On the other hand, the most stable
circumstances occur when dR/dt > 0 and dR/dt? < 0, which is the case for growing bubbles as they approach
their maximum size.
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393U G0 ME LoMbYdo S0MMOMIEm3zs60 dIE9dOL
BOEIOMYMOF 350053070 53m35b5

5. 339gl0sbo
M9bomdg

09O 2560bowgds ddEob BOOL 3Mmiglo d90mbgg3sd0, MrEgbsg d+9d@o d9g3ugdwEos
dbmm© Lombol MOMJWom s 9MIN39 MMEILSE 0G0 HoMBMoygbl MMOMJwols s 0ol
65693L. 36OMm 390 500FgMYdS 26BMYsIOMWO MY g0-3glgmol (B3) FbGHMMgdom, MMIGEOs
33B930ombocrols Lsbom Fgolifjogergds 35600300 sOMOEb3oL TgmmEol gsdmygbgdom. mMmog9
99000b3930L5030L  F0MYOMWOS JOWGMH-3YOLMbOL (93) ABGHMEdS, OHMIOL  9JuEMgdoggdols
9mdgdbs MBOM 005, 30O (M3)-b 53MbLBs. LHLEMEL BmYs dgdmbggzsdo dsbobowrgds
L39O 39FEHOL OJJO-EIOWMEOOL 5M5TYMIMDS sMILGRYOHE0 F985MJd9d0L MM ©o,
OmamO3  390dm  d9dobggzs, LBIOMEo  3IGHOL Moo IMHo  F9IBMmgds.  dobobowrgds
0bBMMYMHIMo. 3OHMmEqLol d9dmbgags.

Poct ra3o-nmapoBbiX Ny3bIPbKOB B MeTacTa0MJIbHBIX AKUAKOCTHX,

KaK BapHalMoOHHas 3aJa4a
A.N. I'Besiecuanun

Pe3rome

Teoperuuecku paccMaTpuBaeTCsA IPOLECC POCTa IMy3bIpbKa B Clydae, KOTAA Iy3bIPb 3allOJIHEH MapoM
YHCTOMN XUAKOCTH U B CiIy4ae, KOTJa B My3bIpe HapsAAy ¢ IapoM MMeeTcs ra3oBasd npuMmecs. VccnenoBanne
BeAETCS Ha OCHOBE OOOOMEHHOrO ypaBHeHHs Penes-Ilmeccera BapHallMOHHBIM METOJOM CKOpEUIIEero
crycka. /1yt 000ouX ciydaeB MOJTy4eHbl COOTBETCTBYIOIINE YPaBHEHUS, MHTETPUPOBAHKUE KOTOPHIX TIO3BOJIUT
HallTu SKCTpeMaiu IIOCTAaBICHHOW BapHallMOHHOM 3anaud. B 3akmroueHue paccmarpuBaercs mpoOiema
YCTOWYMBOCTH C(EepUUecKoro Iy3blpbka B oO0meM ciydae HeycroilunBocti Penes-Teiinopa mpu
HECPEePUUECKIX BO3MYILCHHSX.
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