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ABSTRACT

The advanced method for subpixel detection of small-size targets on hyperspectral image is described. The
method is based on matched filtering model with the succeeding correction of determined pixel fractions.
Correction consists of two stages. First one is a statistical adjustment for actual set of targets/backgrounds in
a scene and second one is a pixel-wise consideration of radiometric separability of spectra. The proposed
advanced method provides more exact subpixel detection of small-size targets in hyperspectral image.
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Introduction. The hyperspectral imagery possibilities to detect subpixel targets are based on
spectra’s fine structure analysis. It is especially important for distinction of targets similar to natural
backgrounds [1]. The special methods and algorithms need for processing of tremendous data amount in
hyperspectral images. In particular, an immediate visual interpretation of hyperspectral imagery is inefficient
because the three-dimensional color representation delivers only a small part of the full spectral information
which is contained in hyperspectral image. Direct interpreting features such as a shape and details are, as a
rule, inaccessible owing to insufficient spatial resolution.

The minimum size of target which can be detected on the image by routine classification is
determined by the geometrical detailing i.e. a ground sample distance (GSD) on the land surface. At the
same time there is an inverse relation between providing GSD and number of imaging spectral bands in the
known multispectral systems of remote sensing. The larger size of GSD in hyperspectral imagery leads to a
possibility of several different targets capture inside one pixel. It causes identification errors.

Problem. Pixel fractions of the target spectra which contain in current pixel have to be result of
subpixel detection of small-sized objects in hyperspectral image. At that the target spectra can be several, i.e.
more than one. Herewith it is considered that only target spectra — the spectral reflectance of target covers —
are known. Other spectra within scene remain unknowns.

For ensuring acceptable level of reliability of target detection by their spectral reflectance the
accuracy of the quantitative determining of pixel fractions of target spectra should be as high as possible
compared to the best known methods [2].

Thus, the purpose of the paper is improvement of a method for subpixel detection of small-size
targets in hyperspectral image.

State-of-the-art. One of features of hyperspectral images a possibility of targets resolving even
inside pixel if their exact spectral signatures are available. This process is called as subpixel detection [3].

Methods for subpixel detection are used to determine a detected target fraction in each pixel of the
hyperspectral image. In case of high spectral contrast between target and background the detection of target
which occupy some percent of the pixel area is possible [4]. Methods for subpixel detection include the
linear unmixing and the matched filtering.
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The linear unmixing is based on representation of a spectrum in any pixel by result of mixing of
several spectra. Mixing in this context is understood as weighing of spectra of all covers within pixel.
Weights of each spectrum are proportional to fractions of the pixel area with this covers [5].

If spectra of all covers in scene are known, then their fractions within each pixel can be calculated by
spectrum of this pixel. Unmixing is carried out by solving of the m linear equations for each pixel where m is
number of spectral samples in the hyperspectral image. In order for the system of these equations to be
solved, it is necessary that m is more than total number of spectra.

For this reason unmixing is possible on hyperspectral data and almost is never applied to usual
multispectral imagery. The output of the linear unmixing is a set of spatial distributions of pixel fractions for
each of input spectra.

The matched filtering is a method for selection from the image only the target spectra chosen by the
user. Unlike the linear unmixing, it isn’t obligatory that all occurred spectra are known therefore the matched
filtering is often called also as partial unmixing.

Originally the matched filtering was developed for selection of rather rare targets in a scene, for
example artificial. For rather widespread targets the results of the matched filtering require the some
correction.

The matched filtering allocates in the input image the pixels, close to a target spectrum, and
suppresses a response from all other spectra which are considered as the complex unknown background [6].
As with the linear unmixing, the output of the matched filtering is a target spectrum fraction inside pixel. The
potential problem of the matched filtering consists in determining the similarity threshold between examined
and target spectrum.

The solution of this problem consists in statistical estimation of noise in hyperspectral image [7]. So,
the matched filtering is the most suitable method for subpixel target detection in hyperspectral images.

The known algorithms for subpixel target detection in hyperspectral image are based on separation
of target and background spectra [8]. Therefore the spectra of targets which should be detected are necessary
before hyperspectral image analysis. For this purpose the spectra retrieval from pre-developed spectral
library of typical targets and backgrounds has to be carried out [9].

The mix of a target spectrum (or few spectra) and undesirable background spectra is considered
during subpixel detection [10]. Generally it is possible to separate all target and background spectra one from
another with an accuracy which is depended on spectral resolution of input hyperspectral data [11].

The linear models of spectral unmixing are most often used for this purpose. Such models provide
determination of weights of the known spectra in proportion to their fractions inside pixel [12]. Methods and
algorithms for spectral unmixing are developed for decades [13], but there are still some difficulties in
practical applications for subpixel target detection. First, the composition of all spectra which are present in
scene is almost never unknown. Therefore, the methods which allow occurrence of uncertain background
spectra are necessary [14]. Second, the majority of the existing methods which meet the first condition — the
matched filters, don’t guarantee keeping of physical restrictions for fractions of target spectra [15].

Model. Each i-th pixel of the hyperspectral image can be represented as an x; m-dimensional vector
of spectral samples, and j-th target spectrum — as an y; m-dimensional vector, j = 1 .. p. Let Y is a matrix of
target spectra dimension of mxp, and ai = (01, a2 .. a,)" is a vector of fractions of target spectra inside i-th
pixel. The linear model of spectral mix for x; pixel is described by the equation:

Xi=VY i+ zi (1)
where z; is a residue vector which can be considered as the additive noise.

The main limitation of unmixing (1) is to exceed the number of spectral bands in hyperspectral
image over the number of spectra which are unmixed: m> p.

If all components of Y matrix are known, then the problem comes down to the overdetermined linear
equation system solving with constrains of NCLS (non-negatively constrained least squares), SCLS (sum-to-
one constrained least squares), or both at once — FCLS (fully constrained least squares). In [16] paper the
rigorous algorithm with FCLS constrains is developed.

71



Unfortunately, in practice the described state nearly always is idealized as the full composition of all
spectra in scene of observation is a priori unknown. In such case, the model should be applied that detects
one or more known target spectra, while the rest are regarded as undesirable [17].

The most perfect of such models is the TCMI (target-constrained minimum interference) matched
filter proposed by Kwan et al. in [18] paper. In it the estimate of fractions sum of target spectra inside i-th
pixel of image equals a'xi, where X; is the full spectral signal in this pixel, and a is the solution of a
minimization problem:

T 1if jistarget
ay;= i
0 otherwise
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n
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<

To calculate a j-th spectrum fraction, it is possible to apply the TCMI filter, considering some spectra
as target, and the others ones as undesirable. Estimate of fractions in i-th pixel will be:
o = (Y'XY)YTXT X; (3)
Here o is a p-dimensional vector.

The TCMI model can be reduced to the linear transformation of spectra matrix and following
application of least squares method:

o' = pinv(X M2Y) X M2 x (4)
where by pinv (-) a pseudo-inversion of matrix is denoted.
Vector’s oj elements can be the negative. In order to avoid the negative values of estimates of spectra
fractions it is necessary to ensure the NCLS constrains [19].
The combination of the TCMI-NCLS models consists in finding the spectra fractions in i-th pixel of
image as critical point with respect to a; in minimization problem:

(X =Yo) X'(%-Yo,) — min
aijZO ®)

j=1..p

Similar to TCMI, the TCMI-NCLS model comes down to multiplication of spectra by X2 matrix
and ensuring the NCLS constrains.

The significant exceeding of the pixel area over the target area should be considered as the typical
case for hyperspectral imaging of small-size targets. Therefore, the pixel fraction of target spectrum will be
small. In this case the NCLS constrains seem quite intrinsic, while the stronger FCLS constrains are
overmuch. At the same time the NCLS constrains allow to preserve the physical nature requirements of
unmixing. It is important advantage over the pure TCMI model.

So, the TCMI-NCLS model is the most suitable for small-size targets detection in hyperspectral
image [20].

Method. Above the TCMI-NCLS (5) model was chosen as essential core of the developed method
for subpixel target detection. However the accuracy of calculation of target spectra fractions provided by it
significantly depends on targets and backgrounds composition in scene as well as on reliability of the close
spectra separation. Therefore the TCMI-NCLS model requires the correction the kernel of which is the
adjustment to specific set of target/background spectra to be detected (the first level of correction) as well as
incorporation the reliability of close spectra separating (the second level of correction).

The first level of correction is based on numerous experiments and represented by regression
dependence between the corrected pixel fraction e and initial one a. As simulation shows, the best in mean
accuracy is provided by exponential type regression of:

e(a) = bx[1 —exp(—kx(a+c)")] , (6)
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where b, c, k, q are regression parameters.

The second level of correction should in any way consider a possibility of correct separating of close
spectra in mix. This level practically is always present at classification of hyperspectral imagery [21] and can
use for the preliminary estimates various informational and statistical metrics, such as information
divergence [22], Bhattacharyya statistical distance [23], or spectral-topological classifier [24].

The separability of optical signals is closely related to contrast; therefore for the analysis of
multidimensional optical fields the Bhattacharyya distance which is an analogue of optical contrast [25]
usually is engaged. However the available practical experience of signal detection in multi- and
hyperspectral images testifies that such indicator as the contrast signal-to-noise ratio (CSNR) y provides the
better efficiency and convenience [26].

Correction of pixel fractions of target spectra depending on CSNR in each pixel of hyperspectral
image at a first approximation can be described by signal-dependent additive term f(a) taking into account
the error probability &(v):

f(a):{a—a-g(yj) a<05 @

a+(l—a)-e(y) a>05
where the error probability (i) is evaluated by pixel CSNR value y as [27]:

) = %(1— erf %} ®)

Thus, three stages of calculation of target spectra pixel fractions are implemented sequentially in the
developed method for subpixel detection of small-size targets in hyperspectral image. At first the matched
filtering with the TCMI-NCLS model [20] which provides the initial guess of pixel fractions is carried out.
Then the regression adjustment of their values by statistics collected within the hyperspectral imaging total
area is conducted. And at last, the fine equalizing of the adjusted values of pixel fractions by the contrast
signal-to-noise ratio in each hyperpixel of image is performed.

The described three-stage model is more flexible in comparison with the TCMI-NCLS one and the
more so with the pure TCMI. Therefore it is able to provide more exact subpixel detection of small-size
targets in hyperspectral image.

Results. Testing of the developed method over the AVIRIS actual hyperspectral aerial image (Fig. 1)
demonstrates its superiority over well-known methods — centered matched filter (CMF) [28], CEM and
TCML.

Fig. 1. ER-2/AVIRIS hyperspectral aerial image

Mojave (USA) power station, September 6, 2018, pseudo-natural color composite,
spectral bands 36 (684 nm), 20 (550 nm), and 10 (453 nm), GSD 5.8 m
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The pixel fractions accuracy of the target spectrum detection was estimated by the mean absolute
error (MAE). Table 1 provides the accuracy estimates for the CMF method, joint one for CEM and TCMI
methods (they are equivalent in the case of single target spectrum) and for the developed method with
correction.

Table 1. The accuracy of pixel fractions of the target spectrum

Target pixel fraction False pixel fraction
Method MAE MAE
CMF 0.149 0.021
CEM/TCMI 0.040 0.027
Proposed 0.033 0.014

As can be seen from the table 1, the proposed method provides the best performances for both target
spectrum detection and false alarm compared to known methods.

Conclusions

The advanced method for subpixel detection of small-size targets in hyperspectral image is proposed. In
addition to the core TCMI-NCLS matched filter it includes a further two-level correction chain for values
adjustment of target spectra pixel fractions. At the first level of correction an adjustment to specific set of
target and background spectra which are subject to detection is carried out. At the second level of correction
the refinement of values of target spectra pixel fractions in each pixel of hyperspectral image is performed.
The model of exponential regression is the kernel for the first level correction. The second level of correction
is conducted in relation with the contrast signal-to-noise ratio in each pixel.

Fulfilled demo subpixel target detection in actual hyperspectral image shows the 17.5% increase in accuracy
relative to known CEM and TCMI methods.
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3039MU39JGM3MEM 359mLsbEgd9dDg d30M9BMBosbo Mmdogd@Egdols
500mBgbols 49BxmdgligdMeEro gommEo

3. 3b®mmbmzgo

®9bomdy

50f96M0w0s 3039ML39dGHMO 450mbEbLgd9dbY d30M9BM060 Md09EJdoL bd30dugwrmEmo
50dmBgbolsmzol  godxmdgligdmeo  dgomEo.  IgMmEo  EIRMABIdMEos  Fgoebbdgdeo
239803360l IMEYEDBY 2560339990 30Ju9gEMHo Howgdol d98AMa 3MGM9d30sDY. 30MYIGMYdS
9902905 M6 bEHSO0sb: b3ghsdo B3gdBHMIOOL  Md0YIEHOOL/BMBYIBOL 3Mb3IMYEMEo b53MTOL
LEAOGHOLEGHO0ZMNMO0 5{gmds S B39JEHMIOOL MOEOMTYEHMOME A9BYMRsEMBdOL 30JLYEMO SOMOELIS.
399m0535H90meo 399dx mdLYdMEo  Fgom©Oo  MHBOWO639wwymal  3039ML39JEHME
2090bobEgd9dbYg d30MGHBMI0560 Md09IEJIOL MBROHM DMUE 5BMBYBSL.

YcoBepuIeHCTBOBAHHBIN METOJ O0OHAPYKEHUS MAJIOPA3ZMEePHBIX
00bEKTOB HA TMIIEPCHEKTPATIBLHBIX H300paKeHUAX

B.B. AnapoHos

Pe3rome

OmnwcaH ycOBEpIIEHCTBOBAHHBIA METOJI JJIsi CyONUKCENILHOTO OOHApYKEHUsT Mallopa3MepHBIX 0OBEKTOB Ha
TUIEPCIEKTPATIbHBIX W300pakeHUsX. MeToJ OCHOBaH Ha MOJENIM COTJIACOBAHHOW (MiIbTpalu ¢
MOCTEAYIOMEN KOPPEKIMEeW OMNpeeNEHHbIX MUKCEIbHbIX AoJjied. Koppekius COCTOMT U3 JABYX CTajuil:
CTaTUCTUYECKAasi HACTPOWKa HAa KOHKPETHBI HA0Op 00BEKTOB/()OHOB CIIEKTPOB B CIICHE M IONMHMKCEIbHBIH
y4€T paAUOMETPUYECKON pa3leaMMOCTH CHEKTpOB. I[IpenoKeHHBI yCOBEPIIEHCTBOBAHHBIA METON
oOecrieunBaeT Ooyiee TOYHOE  CYONHMKCENbHOE OOHApy)KEHHE  MaJopa3MEpHBIX  OOBEKTOB  Ha
TUIEePCIEKTPATIbHBIX N300PaKCHUSX.
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