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ABSTRACT 
 

The advanced method for subpixel detection of small-size targets on hyperspectral image is described. The 

method is based on matched filtering model with the succeeding correction of determined pixel fractions. 

Correction consists of two stages. First one is a statistical adjustment for actual set of targets/backgrounds in 

a scene and second one is a pixel-wise consideration of radiometric separability of spectra. The proposed 

advanced method provides more exact subpixel detection of small-size targets in hyperspectral image. 
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Introduction. The hyperspectral imagery possibilities to detect subpixel targets are based on 

spectra’s fine structure analysis. It is especially important for distinction of targets similar to natural 

backgrounds [1]. The special methods and algorithms need for processing of tremendous data amount in 

hyperspectral images. In particular, an immediate visual interpretation of hyperspectral imagery is inefficient 

because the three-dimensional color representation delivers only a small part of the full spectral information 

which is contained in hyperspectral image. Direct interpreting features such as a shape and details are, as a 

rule, inaccessible owing to insufficient spatial resolution. 

The minimum size of target which can be detected on the image by routine classification is 

determined by the geometrical detailing i.e. a ground sample distance (GSD) on the land surface. At the 

same time there is an inverse relation between providing GSD and number of imaging spectral bands in the 

known multispectral systems of remote sensing. The larger size of GSD in hyperspectral imagery leads to a 

possibility of several different targets capture inside one pixel. It causes identification errors. 

Problem. Pixel fractions of the target spectra which contain in current pixel have to be result of 

subpixel detection of small-sized objects in hyperspectral image. At that the target spectra can be several, i.e. 

more than one. Herewith it is considered that only target spectra – the spectral reflectance of target covers – 

are known. Other spectra within scene remain unknowns. 

For ensuring acceptable level of reliability of target detection by their spectral reflectance the 

accuracy of the quantitative determining of pixel fractions of target spectra should be as high as possible 

compared to the best known methods [2]. 

Thus, the purpose of the paper is improvement of a method for subpixel detection of small-size 

targets in hyperspectral image. 

State-of-the-art. One of features of hyperspectral images a possibility of targets resolving even 

inside pixel if their exact spectral signatures are available. This process is called as subpixel detection [3]. 

Methods for subpixel detection are used to determine a detected target fraction in each pixel of the 

hyperspectral image. In case of high spectral contrast between target and background the detection of target 

which occupy some percent of the pixel area is possible [4]. Methods for subpixel detection include the 

linear unmixing and the matched filtering. 
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The linear unmixing is based on representation of a spectrum in any pixel by result of mixing of 

several spectra. Mixing in this context is understood as weighing of spectra of all covers within pixel. 

Weights of each spectrum are proportional to fractions of the pixel area with this covers [5]. 

If spectra of all covers in scene are known, then their fractions within each pixel can be calculated by 

spectrum of this pixel. Unmixing is carried out by solving of the m linear equations for each pixel where m is 

number of spectral samples in the hyperspectral image. In order for the system of these equations to be 

solved, it is necessary that m is more than total number of spectra. 

For this reason unmixing is possible on hyperspectral data and almost is never applied to usual 

multispectral imagery. The output of the linear unmixing is a set of spatial distributions of pixel fractions for 

each of input spectra. 

The matched filtering is a method for selection from the image only the target spectra chosen by the 

user. Unlike the linear unmixing, it isn’t obligatory that all occurred spectra are known therefore the matched 

filtering is often called also as partial unmixing. 

Originally the matched filtering was developed for selection of rather rare targets in a scene, for 

example artificial. For rather widespread targets the results of the matched filtering require the some 

correction. 

The matched filtering allocates in the input image the pixels, close to a target spectrum, and 

suppresses a response from all other spectra which are considered as the complex unknown background [6]. 

As with the linear unmixing, the output of the matched filtering is a target spectrum fraction inside pixel. The 

potential problem of the matched filtering consists in determining the similarity threshold between examined 

and target spectrum. 

The solution of this problem consists in statistical estimation of noise in hyperspectral image [7]. So, 

the matched filtering is the most suitable method for subpixel target detection in hyperspectral images. 

The known algorithms for subpixel target detection in hyperspectral image are based on separation 

of target and background spectra [8]. Therefore the spectra of targets which should be detected are necessary 

before hyperspectral image analysis. For this purpose the spectra retrieval from pre-developed spectral 

library of typical targets and backgrounds has to be carried out [9]. 

The mix of a target spectrum (or few spectra) and undesirable background spectra is considered 

during subpixel detection [10]. Generally it is possible to separate all target and background spectra one from 

another with an accuracy which is depended on spectral resolution of input hyperspectral data [11]. 

The linear models of spectral unmixing are most often used for this purpose. Such models provide 

determination of weights of the known spectra in proportion to their fractions inside pixel [12]. Methods and 

algorithms for spectral unmixing are developed for decades [13], but there are still some difficulties in 

practical applications for subpixel target detection. First, the composition of all spectra which are present in 

scene is almost never unknown. Therefore, the methods which allow occurrence of uncertain background 

spectra are necessary [14]. Second, the majority of the existing methods which meet the first condition – the 

matched filters, don’t guarantee keeping of physical restrictions for fractions of target spectra [15]. 

Model. Each i-th pixel of the hyperspectral image can be represented as an xi m-dimensional vector 

of spectral samples, and j-th target spectrum – as an yj m-dimensional vector, j = 1 .. p. Let Y is a matrix of 

target spectra dimension of m×p, and αi = (α1, α2 .. αр)Т is a vector of fractions of target spectra inside i-th 

pixel. The linear model of spectral mix for xi pixel is described by the equation: 

xi = Y αi + zi                                                                            (1) 

where zi is a residue vector which can be considered as the additive noise. 

The main limitation of unmixing (1) is to exceed the number of spectral bands in hyperspectral 

image over the number of spectra which are unmixed: m ≥ p. 

If all components of Y matrix are known, then the problem comes down to the overdetermined linear 

equation system solving with constrains of NCLS (non-negatively constrained least squares), SCLS (sum-to-

one constrained least squares), or both at once – FCLS (fully constrained least squares). In [16] paper the 

rigorous algorithm with FCLS constrains is developed. 
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Unfortunately, in practice the described state nearly always is idealized as the full composition of all 

spectra in scene of observation is a priori unknown. In such case, the model should be applied that detects 

one or more known target spectra, while the rest are regarded as undesirable [17]. 

The most perfect of such models is the TCMI (target-constrained minimum interference) matched 

filter proposed by Kwan et al. in [18] paper. In it the estimate of fractions sum of target spectra inside i-th 

pixel of image equals αT xi, where xi is the full spectral signal in this pixel, and α is the solution of a 

minimization problem: 
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To calculate a j-th spectrum fraction, it is possible to apply the TCMI filter, considering some spectra 

as target, and the others ones as undesirable. Estimate of fractions in i-th pixel will be: 

ixXYYXY= 1T11TT )(α −−−
                                                        (3) 

Here α is a p-dimensional vector. 

The TCMI model can be reduced to the linear transformation of spectra matrix and following 

application of least squares method: 

ixXYX= 2/112/1T )(pinvα −−−
                                                     (4) 

where by pinv (·) a pseudo-inversion of matrix is denoted. 

Vector’s αi elements can be the negative. In order to avoid the negative values of estimates of spectra 

fractions it is necessary to ensure the NCLS constrains [19]. 

The combination of the TCMI-NCLS models consists in finding the spectra fractions in i-th pixel of 

image as critical point with respect to αi in minimization problem: 
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Similar to TCMI, the TCMI-NCLS model comes down to multiplication of spectra by X–1/2 matrix 

and ensuring the NCLS constrains. 

The significant exceeding of the pixel area over the target area should be considered as the typical 

case for hyperspectral imaging of small-size targets. Therefore, the pixel fraction of target spectrum will be 

small. In this case the NCLS constrains seem quite intrinsic, while the stronger FCLS constrains are 

overmuch. At the same time the NCLS constrains allow to preserve the physical nature requirements of 

unmixing. It is important advantage over the pure TCMI model. 

So, the TCMI-NCLS model is the most suitable for small-size targets detection in hyperspectral 

image [20]. 

Method. Above the TCMI-NCLS (5) model was chosen as essential core of the developed method 

for subpixel target detection. However the accuracy of calculation of target spectra fractions provided by it 

significantly depends on targets and backgrounds composition in scene as well as on reliability of the close 

spectra separation. Therefore the TCMI-NCLS model requires the correction the kernel of which is the 

adjustment to specific set of target/background spectra to be detected (the first level of correction) as well as 

incorporation the reliability of close spectra separating (the second level of correction). 

The first level of correction is based on numerous experiments and represented by regression 

dependence between the corrected pixel fraction e and initial one α. As simulation shows, the best in mean 

accuracy is provided by exponential type regression of: 

e(α) ≈ b×[1 – exp(–k×(α+c)q)] ,                                                         (6) 
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where b, c, k, q are regression parameters. 

The second level of correction should in any way consider a possibility of correct separating of close 

spectra in mix. This level practically is always present at classification of hyperspectral imagery [21] and can 

use for the preliminary estimates various informational and statistical metrics, such as information 

divergence [22], Bhattacharyya statistical distance [23], or spectral-topological classifier [24]. 

The separability of optical signals is closely related to contrast; therefore for the analysis of 

multidimensional optical fields the Bhattacharyya distance which is an analogue of optical contrast [25] 

usually is engaged. However the available practical experience of signal detection in multi- and 

hyperspectral images testifies that such indicator as the contrast signal-to-noise ratio (CSNR) ψ provides the 

better efficiency and convenience [26]. 

Correction of pixel fractions of target spectra depending on CSNR in each pixel of hyperspectral 

image at a first approximation can be described by signal-dependent additive term f(α) taking into account 

the error probability ε(ψ): 
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where the error probability ε(ψ) is evaluated by pixel CSNR value ψ as [27]: 









−

2
erf1

2

1
)(


                                                                   (8) 

Thus, three stages of calculation of target spectra pixel fractions are implemented sequentially in the 

developed method for subpixel detection of small-size targets in hyperspectral image. At first the matched 

filtering with the TCMI-NCLS model [20] which provides the initial guess of pixel fractions is carried out. 

Then the regression adjustment of their values by statistics collected within the hyperspectral imaging total 

area is conducted. And at last, the fine equalizing of the adjusted values of pixel fractions by the contrast 

signal-to-noise ratio in each hyperpixel of image is performed. 

The described three-stage model is more flexible in comparison with the TCMI-NCLS one and the 

more so with the pure TCMI. Therefore it is able to provide more exact subpixel detection of small-size 

targets in hyperspectral image. 

Results. Testing of the developed method over the AVIRIS actual hyperspectral aerial image (Fig. 1) 

demonstrates its superiority over well-known methods – centered matched filter (CMF) [28], CEM and 

TCMI. 

 

Fig. 1. ER-2/AVIRIS hyperspectral aerial image 

Mojave (USA) power station, September 6, 2018, pseudo-natural color composite, 

spectral bands 36 (684 nm), 20 (550 nm), and 10 (453 nm), GSD 5.8 m 
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The pixel fractions accuracy of the target spectrum detection was estimated by the mean absolute 

error (MAE). Table 1 provides the accuracy estimates for the CMF method, joint one for CEM and TCMI 

methods (they are equivalent in the case of single target spectrum) and for the developed method with 

correction. 

 

Table 1. The accuracy of pixel fractions of the target spectrum 

Method 
Target pixel fraction 

MAE 

False pixel fraction 

MAE 

CMF 0.149 0.021 

CEM/TCMI 0.040 0.027 

Proposed 0.033 0.014 

 

As can be seen from the table 1, the proposed method provides the best performances for both target 

spectrum detection and false alarm compared to known methods. 

 

Conclusions 

 

The advanced method for subpixel detection of small-size targets in hyperspectral image is proposed. In 

addition to the core TCMI-NCLS matched filter it includes a further two-level correction chain for values 

adjustment of target spectra pixel fractions. At the first level of correction an adjustment to specific set of 

target and background spectra which are subject to detection is carried out. At the second level of correction 

the refinement of values of target spectra pixel fractions in each pixel of hyperspectral image is performed. 

The model of exponential regression is the kernel for the first level correction. The second level of correction 

is conducted in relation with the contrast signal-to-noise ratio in each pixel. 

Fulfilled demo subpixel target detection in actual hyperspectral image shows the 17.5% increase in accuracy 

relative to known CEM and TCMI methods. 
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ჰიპერსპექტრალურ გამოსახულებებზე მცირეზომიანი ობიექტების 

აღმოჩენის გაუმჯობესებული მეთოდი  
 

ვ. ანდრონოვი  
 

რეზიუმე  

 

აღწერილია ჰიპერსპექტრალურ გამოსახულებებზე მცირეზომიანი ობიექტების სუბპიქსელური 

აღმოჩენისათვის გაუმჯობესებული მეთოდი. მეთოდი დაფუძნებულია შეთანხმებული 

გაფილტვრის მოდელზე გარკვეული პიქსელური წილების შემდგომ კორექციაზე. კორექტირება 

შედგება ორ სტადიიდან: სცენაში სპექტრების  ობიექტების/ფონების კონკრეტული ანაკრეფის 

სტატისტიკური აწყობა და სპექტრების რადიომეტრიულ განყოფადობის პიქსელური აღრიცხვა. 

შემოთავაზებული  გაუმჯობესებული მეთოდი უზრუნველყოფს ჰიპერსპექტრალურ 

გამოსახულებებზე მცირეზომიანი ობიექტების უფრო ზუსტ აღმოჩენას.  

 

 

Усовершенствованный метод обнаружения малоразмерных 

объектов на гиперспектральных изображениях 
 

В.В. Андронов 

 

Резюме 

Описан усовершенствованный метод для субпиксельного обнаружения малоразмерных объектов на 

гиперспектральных изображениях. Метод основан на модели согласованной фильтрации с 

последующей коррекцией определённых пиксельных долей. Коррекция состоит из двух стадий: 

статистическая настройка на конкретный набор объектов/фонов спектров в сцене и попиксельный 

учёт радиометрической разделимости спектров. Предложенный усовершенствованный метод 

обеспечивает более точное субпиксельное обнаружение малоразмерных объектов на 

гиперспектральных изображениях. 

 

 


