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ABSTARCT

Nowadays, there are many new instruments available for studying the parameters of the Earth’s magnetic
field with higher precision and more discretization. Moreover, data processing techniques have been
developing on strong mathematical basis. The paper presents a rather long-term (1935 - 1950, total 19332
records) data of Dusheti Observatory on the statistics of magnetic declination (1) and considers the
possibilities of so called machine learning (ML), a widespread method nowadays. It gives hypotheses to prove
certain hidden regularities and periodicity of some geomagnetic parameters and determines so called
“storages” of high statistical reliability, which are the etalon samples we use to build attribution function by
use of so called Adam Deep Learning network (2).
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Preamble

It is required to carry out certain statistical works in order to study a kind of long-term statistics as
described in this work. We decided it was necessary to build standard variation series for magnetic declinations
on the basis of months and years. Namely, it is important to make time period observations on variation series,
also on separate series for 2¢ and 3¢ (3) parts. These two series turn out to be interesting in the annual point
of view. It is highly essential to identify the density distribution of the statistical data in these clusters and
whether they show any distribution regularities or behavior in dynamics.

Obviously, there is always an objectivity degree problem (equipment defects, etc.) in data.
Consequently, it is required to exclude subjective statistics and there are numerous techniques for that.
Nowadays, softwares with filtration tasks have been highly developed among computer technologies. Our data
have undergone strict filtration processes. Of course, main informative anomalies have been preserved that is
definitely significant.
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Fig. 1. Dynamics of average annual magnetic declination values (1936 - 1991).
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The average annual values in Figure 1 have periodic and regular structure. There is an exception of
the Dusheti Observatory data of 1941-1942 and 1964-1966 in the average annual value point of view. These
two episodes are conceivable, though, due to quite objective reasons, they might be a result of strong influence
of artificial anomaly nearby the equipment location. We may conclude that, according to the figure, the average
annual values have approximately 40-year cycles. Additionally, so called wave behavior has been revealed.
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Fig. 2. Quantitative time period analysis of 2¢ order anomalies of the magnetic field declination during
1936-1991.
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Fig. 3. Quantitative time period analysis of 3¢ order anomalies of the magnetic field declination during
1936-1991.

Figure 2 shows shares of more than 20 anomalies in a concrete year among the whole annual data. In
1936, for example, among the whole data the anomalies were declined from average value by more than 2o
altogether in 8% cases. Like this, in 1959 the number of such anomalies makes only 20% of the annual data.
The issue of anomaly measurements according to the distinguished years is quite informative by frequency
calculations in this figure.

Figure 3 shows shares of more than 3¢ anomalies in a concrete year among the whole annual data.
Here, statistical stability is under doubt and verification of statistical hypotheses of strong anomaly zones is
prevented as far as their reliability is doubtful. There a question arises: why? It is due their limited involvement
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with all the data. However, from 1936 to 1960 their share is more than in 1960-1985, whereas at the end of the
80-s of the past century, processes similar to the ones in 1936-1960 take place.

From Figures 1, 2 and 3 we may conclude that there is an alternation of rise (more dynamics) and fall
in the magnetic declination. We are interested in the proceeding of the data till now. Does the magnetic
declination parameter maintain its characteristics? Additionally, it is noteworthy to mention that there an
alternation of average declination takes place from year to year, an average of so called Up and an average of
so called Down. For example, so called Up-s and Down-s (frequent alternations of rise and fall) according to
months must be a potential to build a good forecasting model.

If we bring in the following marks for our magnetic declination statistics:

Xi where (i is changed 1:19332)

we can build the following matrix:

Let us make components from previous 30 data in time for each i member. Our task is to find such F
function, which will find links between any X; and previous 30 records.

In this way we receive:
F(Xy, Xiv1, Xivz - Xivso) = Xigzr (1)

The whole machine learning theory considers optimization of F, which uses different algorithms. In
this paper we will consider Adam Optimization Algorithm for Deep Learning (1).

The normalized learning sampling for Formula (1) in the form of a real table is given as follows:

X1 X2 X3 » » " X29 X30 X(31)
2899 2898 2893 . . . 2922 2925 2921
2898 2893 2898 . . . 2925 2921 2920
2893 2898 2902 . . . 2921 2920 2917
2898 2902 2908 . . . 2920 2917 2917
2902 2908 2918 . . . 2917 2917 2920
2908 2918 2930 . . . 2917 2920 2913
2917 2911 2912 . . . 2925 2925 2925
2911 2912 2910 . . . 2925 2925 2919

Finally, we received a learning sampling with 30 inputs and one output.

A significant detail in the algorithm is the one, which can find links between each reading and its
predecessor 30 data. In this case we will construct such a model, which will enable us to make an optimal
prognosis by every 30 predecessor reading by means of Adam network.

Wepr = (1= Dwe —nVf(wy) (2)

As we know, in Adam algorithm, optimization of (1) is a solution to equation (2) for each necessary
iteration (usually, there are 1000 iterations) for weight sampling, where A is a parameter guiding the weight
drop. Of course, here we have L2 regularization for decreasing unjustified weights, which is based on so called
penalty principle, finally, on search function modification to have L2 -norm weight vector (4).



Table 1. Matrix of confusion (clarity) of the prognosis by 30-day predecessors of 1936-1991 magnetic field

Target
output:

2851.. 2887.6

2837.6.. 2924.2
28524.2.. 29%0.8
2960.8... 2997.4
2997.4.. 3034

3034, 3070.6

070.6..3107.2
3107.2., 3143.8

3143.8.. 3180.4

3180.4.. 3217

declination.
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Table 1 shows the qualitative assessment of the obtained prognostic model according to their interval
(cluster) distribution. More exactly, here we have real and false coincidences of prognostic and real data, which
are expressed quantitatively and by clusters.
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Fig. 4. Scheme of the prognosis by 30-day predecessors of 1936-1991 magnetic field declination.

Figure 4 clearly shows the compatibility between learning sampling and prognostic model. The real
data are given in red colour and the prognostic values are shown in blue. It is obvious that the values of the
strong anomalies, which took place in 1940-1950, are not reliable. However, taking into account these
anomalies, the model revealed similar strong anomalies of the same order more accurately at the end of 1980-
s. Finally, we have following characteristics for the constructed model:

Target loutput |aE |arE |

Mean:| 3042,505371 3041840249 5.740834 |0.001887

Std Dev:|68.173232  |67.271728 J.886604 | 0.001927

Min:| 2851 2908.16561365 |0.000849 2. 71EO7

Max:[3217 3171404207 101.941242 |0.033066

Correlation: 0.992765
R-sguared: 0.93506



The obtained result makes it clear that there is a tight correlation (0.992766) between the value of
magnetic declination of any day and its predecessor 30-day data. The corrected determination coefficient
0.98506 means that our prognostic model, taking into account the predecessor 30 days, forecasts the probable
value of the following day declination by nearly 99% on the eve.

Conclusion

The statistical study of the Dusheti Observatory (overall 19332 readings, y.y.1935-1950) shows that
the dynamics of average annual values is characterized with 45-year cycle. Here statistically stable periodicity
of increase of magnetic declination variations is distinguished. Namely, increase from minimal meaning to
peak value needs approximately 15 years. There was a peak of such variation in 1952 and during the following
15 years a decrease took place. Further on, similar increase was observed during the next 15 years.

Taking into consideration, in our work we constructed an Adam deep learning network and received
a high reliability prognostic model. The obtained model can be used for every-day forecasting as well as for
more long-term prognoses.
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CratucTuka MAarHUTHOTO CKJIOHeHus1 (Jymern, 1935-1989 rr.) n

MO/IeJIb IJIy00KOr0 caM000y4YeHust

T.B. Kupua, A.A. Icakna, M.M. Hukoaaiimsuiau, J./1. Jlomaaze
Pedepar

B crarbe npeacTaBneHsl T0BOALHO aauTenabHbie (1935 - 1950 r.r., Bcero 19332 oTcueTa) naHHBIC MATHUTHOTO
CKJIoOHeHus1 oOcepBaTopun JlymieTn, cHavana CTaTUCTUYECKUE, a 3aTeM, HMIMPOKO HCIIONIb3yeMble, METOIOM
MammHHOTO 00yuenust (ML). [lpuBomsrcss rtHmoTe3sl it OOOCHOBAaHHUS OMpEAENEeHHBIX CKPBITHIX
3aKOHOMEPHOCTEH M MMEPHOANIHOCTH HEKOTOPHIX T€OMAarHUTHBIX MTapaMeTPOB.

C BBICOKO# CTAaTHCTHYECKOH CTAa0MIBHOCTBIO YCTAHOBIEHA T. H. "yCTOMYMBOCTE'. DTO T€ CTaHIAPTHHIE
00pasIpl, KOTOPhIE MBI HCIIONB3YEM C MOMOIIBIO CETH TIIyOOKOTO caMOoOydeHus Amama Ui TOCTPOSHUS
(YHKIMY TPUHA]ICKHOCTH.
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