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Abstract

From the unified point of view, this paper discusses some known and new results of
theoretical and experimental investigations of slow mesoscale convective motions in the neutral and
conductive gas and liquid mediums, and a mantle. Specific thermo-hydrodynamic regime conditions
of the considered mediums were taken into account for determination of onset of convection and the
vertical velocity of arisen heat thermal.

1. Introduction.

Turbulent heat- and mass-transfer processes are well known, and their research represents
great interest for specialists, dealing with investigations of the geophysical and various practical
problems. In that consequence, some known of other authors and some original results and
discussions of the problems will be considered below [1-14]. This paper is sequential of the article
[15].

2. Double convective diffusion in an ocean. Thermal and haline convection.

2.1. Theoretical analysis of Benard’s experiments was made by Rayleigh, which issued
linearized thermo-hydrodynamic equations of incompressible viscous liquid in the Boussinesq
approximation [5, 7]
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where A=(T, -T))/h, T=Ty(2)+6, T, =T, + Az.

For solution of the Benard problem Rayleigh introduces the idea of free layer without tension forces
at its boundaries:
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Seeking the solution in the form normal modes Rayleigh found exact solution and obtained the
critical values of the introduced parameter Ra = gaATh® /vv, , Ra, =27x* | 4=657.511 (of the

onset of thermal instability), and wave parameters (|k

,N) of the most fast growing perturbation.
(v;, p',0)= e IR (0(2), p'(2),0(2) 3)
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Breaking stability depends on the form and dimensions of convective motions, perturbations
scale, conditions at the boundaries of convective layer etc. The Rayleigh criterion is a criterion of
onset and evolution of the cellular convection. At the critical value of the Rayleigh number,
periodical relative to the spatial values stationary convective motions are arisen.

2.2. The temperature and salinity of sea water has non-uniform distribution. Most essential
peculiarity of the sea water is influence of heat and salt on the density and characteristic property of
heat and salt. Their opposite action upon the density of the sea water is reflected in expression
Ap/ p, = PAS — AT . Diffusion of a heat and salt in the sea water is determined by the thermal
diffusivity (v, ~1.5-107 cm’s™") and the diffusion constant (v¢ ~1.3-107° cm®s™), v, /v = 115.
Brilliant mental experiment of Stommel-Arons-Blanchard (1956) [6], short report “An
oceanographical curiosity: the perpetual salt fountain” become basic work initiated and stimulated
study of convection in the presence of double diffusion process. The authors also suggested a
scheme of operation.

In the sea, where the double convective diffusion takes place, the Archimedes force of total
buoyancy has following form [7]:

022 _ g(aAT - pAS), R = ATl

Py - plas|” ®

where Ap=p-p,, AT=T-T,, AS=S-S5,, herep,, T,, S,are means of the density,
temperature and salinity at the layer lower boundary, Ap, AT, AS are increments of the density,
temperature and salinity at the layer upper boundary; « andf are coefficients of volumetric

expansion and its salt analogue, respectively; Ris so called relation of buoyancy, which
characterizes influence of two diffusive components upon the density change.
It is said that the layer is stably stratified if Ap< 0; when Ap= 0, stratification of layer is

neutral; when AS= S = 0 — thermal convection (heating from below), then AT < 0 and Ap> 0

stratification of layer is unstable; when AT = 0 — isothermal salt convection (salinization from
above), then AS >0 and Ap > 0 — stratification of layer is unstable, too.

In the non-trivial double-convection case when AT # 0, AS # 0 it is evident that four cases of
the temperature and salinity drops may be considered (salinization and heating of the water layer
from above or from below):

(1) The salinization and heating from above: AS >0, AT >0, Ap/p, =-PAS(R-1);
(la) R>1, Ap <0, stable stratification, (Ib) R<1, Ap > 0, unstable stratification.
(2) The salinization and heating from below: AS <0, AT <0, Ap/p, = PAS(1-R);
(2a) R<1, Ap <0, stable stratification, (2b) R>1, Ap > 0, unstable stratification;
(3) The salinization from above and heating from below. AS >0, AT <0,
Ap/p, = PAS(R+1)
— stratification always is unstable;

(4) The salinization from below and heating from above. AS <0 AT >0, Ap/p, =
= SAS(R +1) < 0 — stratification always is stable.
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Expressions for convective vertical velocity and effective Reynolds number have following
form [7]

Wz%(hré'zx\/?—l)]m, or Wz%[(“'é‘zX\/F—l)]m, ()

where S=1"/H, k, =7/H, o =Pr=v/a,, r=a /v, r=r= s 4T 0
R a, ay; dz dz

where
Pr=693, 7 =115;for T, =200C,SO =40%, =072, a=2.1-107*("C). (7)

In the laboratory experiments modeling a double-convection in the systems heat-salt and
sugar-salt (similar systems NaCI-KCl) no diffusing components loss takes place.
According to measurements in the upper layer of the ocean the vertical velocity of

convectional motion changes from 0.04 cm-s™" at the surface (h = 0 m.) of the ocean to 0.91
cm-s at the depth h = 600 m.

w=0.04-0.91 cm-s™', h=0-+600m. (8)

2.2.2. In the presence of vertical velocity shear of the main fluid flow dU /dz in the layer of
the water with heterogeneous density with a thickness equals to h'respective Rayleigh
number Ra" is, [8],

*3
Ra* = h—41
h* v

du

—|Ra; Ra <Ra. 9)
dz

Here h is the initial thickness of the free convection layer. Positive values of the Rayleigh
number Ra" > 0 characterizes instability of the layerh”.

3.1. Two-phase flows [16]. Equation of a turbulent energy balance in the shearing motion
containing solid particles of sparse distribution takes up the form [15]

p<u'W'>Z—u+p8t+<p'W'>g=0; (10)
Z
it is convenient to rewrite the aforecited equation in a following shape
<u’W'>Z—u(l—KO)+5t=O, (11)
z

where the non-dimensional Kolmogorov parameter, Ko,

Ko=-—229 __995W = Kox«l, (12)
puwu,  uwu,

!

u
mixture, and mean volume concentration, s, of the particles, respectively; o =(p,—p)/ p, p,is

, W, p', and s'are pulsations of horizontal and vertical components of velocity, density of

the density of particles, and U, =0u/0z. The Kolmogorov number shows a turbulent energy
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consumption of the flow to the weighing of particles. When the Kolmogorov number Ko ~1, the
particles influence on the dynamics of the flow is great, i.e., the Kolmogorov parameter Ko
becomes an additional parameter determining influence of the stratification. Thus, the
Kolmogorov parameter, Ko, is similar to Richardson’s one in the theory of temperature
stratification.

3.2. The energetic layer of an ocean.

(2) (b)

Z

Fig. 1. Temperature distribution in the upper layer of the ocean:
(a) schematic profile of temperature: (1) is the upper uniform layer,
(2) is the upper thermocline [16]; (b) precise measuring profile [17].

Upper energetic layer of an ocean is uniform (in it the temperature and salinity. and, therefore,
the density are constant) is connected with the turbulent mixing (see Fig.1). The mixing is realized
by the wind shear and convection: descending heavy particles to swim with the current from the
upper layer, cooled and salted, as a result of evaporation from the surface and also of breaking of
the surface waves. The depth of this layer depends on the season: it increases in winter and
decreases in spring. The upper uniform layer is supported by the region with sharply changed
temperature (Fig. la) — upper thermocline to the depth about 200-250 m. Here a seasonal
temperature changing does not become apparent. An analysis of temperature distributions in the
strong and stable stratified upper thermocline shows that in the upper thermocline the turbulent

diffusivity coefficient is of order @ ~(107' =1)cm?/s, intermediate value between the upper
turbulent uniform layer’s value equal to a,~10°cm’/s, and the value of the molecular thermal

diffusivity, & ~ 107°cm’®/s. More precise measurements [17] obtain, that instantaneous
temperature stratification has stepped character: the range of constant temperature changed by
region with great gradients (Fig. 1b). That results from turbulence in the turbulent flow with steady
stratification is spread in the form of pots and connected with internal waves [18].

3.3. Laboratory experiments [19]. Free convective motions inside of the heterogeneity
liquids are one of main processes giving rise to generation of fine structure of ocean, atmosphere,
and, seemingly, only mechanism of stratification of Antarctida’ Lake Vanda type closed basins.
Laboratory experiments (provided under lateral heating) showed that general property of the spatial
structure (SS) of convective motions inside stratified liquid (SL) is generation periodic vertical
circular layers. These layers separated by thin plates of still liquid having great gradients of
temperature and salinity, shear of velocity. The convective processes inside of SL are convenient
model for study of periodical SS dynamics inside of heterogeneity media. In this case, the
temperature is “fast” variable and salinity is “slow” variable, spatial dispersion caused by difference

of their kinetic coefficients — the thermal diffusivity y =1.43-10cm?/sand diffusion of a salt
k, =1.41-10"cm?*/s[19].
4. Golitsyn’s approximate theory of the roll convection [11].

4.1. The U-Ra-Nu relation.An interest to this problem was arisen under attempts to estimate
the motion velocities in the Earth upper mantle, which cause displacements of the lithospheric
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plates of the Earth’s crust. From the formula for the energy dissipation (under equal derivatives of
the velocity components) and the character scale equal to the thickness of the layer d (roll
convection) the mean values of the velocity components are [11]:

1/2 1/2
Uszl(fj d:g[ﬂN“_lJ , (13)
a\v al uc, Nu
or
U~W z%(Ra(Nu D)2, Nus>1. (14)

1.e. for sufficiently developed convection, when the Raynolds numberRe > 1500, the Rayleigh
number Ra ~ 10’ and between them is following relation:

Re=0.5a, P~ Ra*”’, (15)

where a, is experimental constant, x is the coefficient of thermal diffusivity.

The author using the McKenzie et al. (1974) [11] recommendations for values of the
material parameters:az =2-10°K™, ¢, =12-10°J/(kg-K), p=3.6t/m’, v=2.10"m’/s,
obtains for the geothermal flux of heat value f = 6-10°Wt/m*, for thickness of the upper mantle
value d =7-10°m=700km, and for mean velocity (14) following value

U ~1lcm/ year . (16)

According to Elsasser et al. (1979) ( [11]) all mantle with thickness d =3000km takes part in
convection process. Then

U ~5cm/year, (17)
what is near to real situation
U ~10cm/ year . (18)

Another available conclusion for study fluid motions in the mental is that under small
Raynolds’ numbers the self-similarity of convection follows from these conceptions [12, 13]. There
is possibility of laboratory modeling of such motions under small Reynolds number [11]. In detail,
results of the laboratory investigations of this problem are discussed in the large paper [14].

4.2. The Nu-Ra relation.

Thermal conductivity equation in a fluid without internal sources,

2
T 2T, 15

is a homogeneous equation relative to the choice of the temperature scale. Introduce the scales of
the length, d , velocity, U, and time, d /U . Then before the Laplacian in r.h.s. is appeared a factor,

Pe™! (where Peis the Peklet number),

Pe=Ud/x . (20)
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It is evident that when Pe >>1 the thermal boundary layer of the thickness

d

s=dpe’?, (Sxpe) (Nu ~%), @1

is generated, but in the main part of liquid its temperature must little change.
A lot of laboratory and numerical experiments [20] confirm this picture and show that at the

developed convection the temperature changes about AT /2 near the boundaries and in main
volume the liquid is isothermal, practically.

From the heat flux continuity through the liquid it is evident that f / pc, ~ kAT /25 . Using
(21) and fd = pc, kAT + HG, H =c,/ag , the author obtained the relation [11]:

Nu~ Pe'?/2. (22)

Choose the scale of velocity in form of (14), then instead of (22) we have
Nu ~[Ra(Nu —1)]"*/2a"">. (23)
At small supercritical values of the Rayleigh number Ra(Nu—1) ~ Ra—Ra_, i.e.
Nu ~ (Ra—Ra,)"*. (24)
For Nu>>1, from (23) we have that
Nu~2"**a”"”Ra'’. (25)
These heat-transfer principles are well-known experimentally and the last one also has

theoretical substantiations [20, 21]. These formulas (22)-(25) are free from several assumptions of
other authors. Coefficient 2™*?a>*=0.1 ata=9 and 0.08 ata= 12.

According to [22], in case of plane surface for Ra >10’at united laminar and turbulent
convection Nu=0.13Ra"*, for Ra 10*+10’ at a natural laminar convection the dependence is lower
Nu=0.59Ra"*, but according to [14] Nu ~0.1Ra,"*. Last investigations reviewed in [14] confirm
Nu - Ra relation obtained by [11].

4.3. The K-Qr relation..
For non-dimensional kinetic energy of convection, K, it is obtained the formula

K =L@ +w2)z—Ra(N;“D, (26)
2 a
in dimensional form
fd> G
K ~ ?7 = ?Trel (27)

where G = yf is the velocity of the kinetic energy generation from potential one (mechanical
power), y=dT/dz, fis the heat flux through the liquid without internal sources of
heat,z,, =d* /v is the viscous relaxation time.

57



For density convection in (14) instead of G = jf one can substitute G = y,mgd , where y is

the velocity of the kinetic energy generation, mis the flux of density through the layer, mgd is the

mechanical power introducing into the flux under a stationary density convection.
In the inertial interval (homogeneous isotropic interval) for kinetic energy of the volume

with a mass M = pd° relative to similar neighbour volumes the kinetic energy of convection
K=M(ed)* =Q,d(ed) ", (28)

where Q,, = ped’is the incoming total power of energy from the external scale of turbulence and

1/3

dissipating into the viscous interval. Because of (&d)'” ~U , the mean square different of velocities

1/3

in two points of the area divided by the distance equals tod , than d(ed) " =17, is suggested as

the character time life of the vortex of the scaled .
K~Q r,. (29)

The kinetic energy of circulation on the slowly revolving planet may be written in similar
form

K ~Qr,, (30)

where Q = 47a°qis a total energy surge to the planet of radius a, qis a mean solar energy
surge to the area element of a planet surface, r, =a/cC,is a character time of propagation of
disturbance in global scale, ¢, is the isothermal speed of sound at the equilibrium temperature

T.=(q/c)"", and o is the Stephan-Boltzmann constant.

Last formulas show that the total kinetic energy of large quantity of forced flows is
determined by the product of the energy input into the liquid and the character time of relaxation. It
is of importance that in all considered cases above mentioned time is the least among all times
which may construct from parameters of the problem (having at one’s disposal). Taking into
account the hypothesis of self-similarity, that time is generally single one. Golitsyn introduces the
rule of the fastest reaction which he names as “principle of the fastest reaction”: the kinetic energy
of constant forced flow is of the order of power input multiplied by the minimal relaxation time
character for the system. This rule allows without recourse to the similarity theory to write the
expression for total kinetic energy of the system.

5. The mantle plumes.

5.1. A simple model for planetary mantle convection is the Bénard convection in a fluid with a
temperature-dependent viscosity. In the Bénard problem, dissipative processes play an essential
role. Bénard was particularly interested in the role of viscosity. He found that when the temperature
of the lower surface was gradually increased, at a certain instant, the layer became reticulated and
revealed its dissection into cells [9]. This problem is one of the actual problems of the Geophysics
and Physics of the Earth.
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Fig. 3. A schematic illustration of the horizontally averaged variation of temperature (solid line)
with depth during an experiment. Also shown are the active thermal boundary layers (thin dashed
lines) at the top and bottom of the fluid layer. The high viscosity of the coldest region makes the
upper part of the cold thermal boundary layer stagnant. Resultant weak cooling keeps the actively
convecting region nearly isothermal and, in turn, the viscosity ratio across the hot thermal boundary
layer small [14].

5.2. According to [23] the main unknown parameters are viscosity values within mantle layers
whose number and thickness are prescribed in the models developed during the past two decades.
These parameters are estimated by comparing observations and predictions of relative sea level
change at various sites over the past 18,000 years. Secular changes of length of day and the Earth’s
gravitational oblateness also contain information on the depth-varying mantle viscosity. The upper

mantle viscosity is fixed here at5-10* Pas. Comparison of theoretical oblateness- viscosity curve
and observational one with each other leads to a lower mantle viscosity around 2-10*' Pas. (The

author suggests the range 1—5-10%' Pasthat fits the geological observations). This evident is
conformed to the diagram in Fig. 3 [14].

Fig. 3. Fig. 4.

Fig. 3 (left). A laboratory experiment with compositional convection in which low-viscosity water
is injected through a permeable plate into high-viscosity glucose syrop. In a way that is dynamically
similar to thermal convection, water collects in a gravitationally unstable compositional boundary
layer at the base of the syrup and then drains intermittently as plumes with large heads and narrow
underlying conduits. Despite the presence of robust low-viscosity conduits, complicated interactions
among rising plumes prevent their becoming long-lived stable features [14].
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Fig. 4 (right). Schematic illustration of several models for D" . Within the context of plate tectonics,
D"has been explained variously as (a) a phase change, (b) a thermal boundary layer, (c) a
compositional boundary layer, (d) ponded chemical dregs from subducted lithosphere, and (e) a slab
graveyard [14].

(a) (b)

Fig. 5. (a) Schematic cross section of the deformed dense layer defining variables and the geometry
of the problem — dense layer topography and long-lived plumes. This scheme was constructed on
the basis of laboratory experiments which showed as the dense layer is deformed by flow into a
nascent plume instability showing the different regions of the flow. (b) Schematic cross section of
the deformed dense layer defining variables and the geometry of the problem — height of
topography. In order for topography to be stableU , ~ u'[14].

5.3. According to [26] lubrication theory analysis the perturbed velocity of fluids [14]
u(z)=U +u'(2), (31)
where U is the velocity at the boundary between the interior and thermal boundary layer fluid,

u’(z)describes the variations in velocity within the boundary layer. The X-component of the
momentum equation is

20,1
op o°u and 8_pzApgh

= , , 32
x o ox L 32)
where p is dynamic pressure, we have
2
u’' ~ M , (33)
7,

Continuity of viscous stresses at the interface between the cold interior fluid and the thermal
boundary layer demands that U /L ~ au'/ S and thus that

u ~ 4o (34)
e

The criterion for stable plumes is that the velocity U must be greater than the speed, at which a
thermal can rise through the mantle,

Apgo?
U~ (35)

He
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where Ap is the difference between the density of thermal boundary layer fluid and interior fluid, g
is gravity u,is the viscosity at the cold boundary, o is the thermal boundary layer’s thickness, h is
the dense layer’s height. This condition leads to the requirement that h/o >const (in the

experiments h/J = 0.6).

Long-lived plumes are located on top of topographic peaks on the dense layer. In order for a
plume conduit to become fixed on top of such a feature it is clear that thermal boundary layer fluid
must flow along the interface with the dense layer faster than it can rise vertically into the interior as
a new thermal. Said differently, the timescale for thermal boundary layer fluid to flow laterally from
the center of an embayment to a peak must be less than the timescale for a new convective
instability to grow.

The scheme Fig. 5a was constructed on the basis of laboratory experiments which showed as
the dense layer is deformed by flow into a nascent plume instability showing the different regions of
the flow. Knowing the height of the topography on the dense layer is critical for determining the
stability of plumes. One dynamical requirement for stable topography is that the lateral flow of
boundary layer fluid must be balanced by the opposing flow of dense layer material (Fig. 5b). The

condition implies thatU, ~u’, where U, ~ Apghs” /Lu and thus that
1/2 1/2
h A 1
5" [ﬁ] - (E) | G0

For comparison with the above mentioned picture of air bubbles generation (Fig. 3), below it is
given the similar picture of air babbles, generated in super-cooled water drop after its freezing.
Water drops of about 2-3 mm in diameter were frozen on the ice in the original micro-cold-store
engineered in Geophysical Institute of Georgian Acad. Sci. [28].

6. Some remarks.

Fig. 6. Internal bubble structure of frozen supercooled
water drop of about 2-3 mm in size [28].

were used. After freezing maximal air babbles’ diameter was about 0.3 mm. The speed of spreading
of the crystallization front G ~3.48-107° cm-s™'; temperature drop of air in the cold store
AT =-10°, thermal conductivity of air 1, =5.63-107° cal(cm-sec- K )™, solubility of air in water
in mole fractions is D~1.3+1.8-107; diffusion of a heat in the water v; ~1.5-107 cm®s™". The

sizes of the air bubbles and thickness of initial ice layers in the freezing drop correlate with D/G .
The thickness of first clear layer of ice is about 0.1-0.2 mm, and diameters of air bubbles ~ 0.12-
0.16 mm.
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6.1. It necessary to note, that criterion B = Ap/ paAT in [14] may be obtained as ratio of
criteria Archimedes, Ar = (gl’ /v*)Ap/ p, and Grashof criteria, Gr = (gI° /v*)aAT :

Ar:Gr =B =Ap/ paAT . (37)

When the Reynolds number Re =Ul /v equals to the Archimedes
number Ar = (gl’/v*)Ap/ p, then for an ascending motion velocity of the warm mass of liquid we
have the following formula:

2
u =A%'; (38)

Using the relation U /L ~u'/hor U =u'L/h,i.e. we have that u'L/h = Apgl*/ pv or

u’~ Apghl®/ pWi . Having suggest | = &, one can obtain the expression (35) for the velocity
variation in the boundary layer according to the modeling experiments [14]:

Apgo*
U~

c

6.2. Let compare Golitsyn’s formula (22) with Jellinek-Manga’s one (36):

Nu~d-pes and  Rope,
o o

we obtain dependence between the Peklet number, and the form-factor B
Pe~B"
here d =h Pe=Ud/x, and B =Ap,/ paAT, is the stabilizing buoyancy effect of the dense layer.

6.3. The theory of thermal instability in fluid spheres and in spherical shells has bearings on a
number of geophysical questions [9]. Though applications of the theory are not universally
subscribed, it cannot be doubted that convective motions in the fluid core are relevant to all
theoriesconcerned with the origin of the earth’s magnetic field and its secular variations.

But the theory of thermal instability has not been worked out with sufficient generality for these
purposes. Even the effect of rotation has been examined only in a very preliminary way; and the
onset of instability as overstability — which should be expected to be the rule rather than the
exception with liquid metals requires investigation. And in addition to rotation, the effect of a
magnetic field has also to be considered. The case of a uniform magnetic field presents no formal
difficulty; but this is hardly appropriate for the problems in view. Without further knowledge, the
choice of an initial field is so wide that the selection becomes almost arbitrary. It is, indeed, likely
that the theory of the convective motions in the earth’s core cannot be dissociated from the theory
of the origin of the earth’s magnetic field.

7. Conclusion.

In the above considered cases of convective motions we practically deal with the
Bénard problem: (a) for a single fluid when the instability has a simple mechanical interpretation
and (b) for a mixture in which the motion gets complicated by the diffusion processes. In the linear
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stability theory, it is generally assumed that the most general perturbation can be represented as a
complete set of normal modes. This approach of the problem, as is well known, was carefully
developed by Chandrasekhar [9], and analyzed later, for example, in the monographs [10, 27]),
especially by Joseph [10].

Being first step in analysis of the convective motions the linear theory cannot answer a
number of essential questions. First of all, that is a question about stabilization of the rapidly
increasing perturbations, secondly, a question about the structure of convective cells and their
stability. Only by means of non-linear theory it is possible to answer these questions.
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O KOHBEKTHBHbIX ABUHKCHUSAX B PA3JITUIHBIX reoqm3nqec1mx cpeaax

Anzop U. I'Benecuann

C eauHOM  TOYKM 3pEHUS]  pAacCMATPUBAIOTCS  pE3yNbTaThl  TEOPETUYECKUX U
9KCHEPUMEHTAIbHBIX HCCIEAOBAaHUM MEIJICHHBIX ME3aMacIITaOHbIX KOHBEKTHUBHBIX JBM)KEHUI B
aTMocdepe, OKeaHe M MaHTHM. Y4YTEHa crenu(uKa pPeKUMOB pPacCMaTpUBAeMbIX CpeA Mpu
OIIPEJICIEHUH YCIIOBHIM BO3HMKHOBEHUS KOHBEKLIMH M HaXOXKJICHUU aHATUTHYECKHX (OpMYyN Uis
BEPTUKAIBHON CKOPOCTH BOCXOSAIIETO TEPMHKA.
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