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Abstract

The linear mechanism of generation, intensification and further nonlinear dynamics of internal
gravity waves (IGW) in stably stratified dissipative ionosphere with non-uniform zonal wind (shear
flow) is studied. In case of the shear flows the operators of linear problem are non-selfadjoint, and the
corresponding Eigen functions - nonorthogonal. Thus, canonical - modal approach is of less use
studying such motions. Non-modal mathematical analysis becomes more adequate for such problems.
On the basis of non-modal approach, the equations of dynamics and the energy transfer of IGW
disturbances in the ionosphere with a shear flow is obtained. Necessary conditions of instability of the
considered shear flows are obtained. The increment of shear instability of IGW is defined. Exact
analytical solutions of the linear as well as the nonlinear dynamic equations of the problem are built. It
is revealed that the transient amplification of IGW disturbances due time does not flow exponentially,
but in algebraic - power law manner. The frequency and wave-number of the generated IGW modes
are functions of time. Thus in the ionosphere with the shear flow, a wide range of wave disturbances
are produced by the linear effects, when the nonlinear and turbulent ones are absent. The effectiveness
of the linear amplification mechanism of IGW at interaction with non-uniform zonal wind is analyzed.
It is shown that at initial linear stage of evolution IGW effectively temporarily draws energy from the
shear flow significantly increasing (by order of magnitude) own amplitude and energy. With amplitude
growth the nonlinear mechanism of self-localization turns on and the process ends with self-
organization of nonlinear solitary, strongly localized IGW vortex structures. Therefore, a new degree
of freedom of the system and accordingly, the path of evolution of disturbances appear in a medium
with shear flow. Depending on the type of shear flow velocity profile the nonlinear IGW structures can
be the pure monopole vortices, the transverse vortex chain or the longitudinal vortex street in the
background of non-uniform zonal wind. Accumulation of these vortices in the ionosphere medium can
create the strongly turbulent state.
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1. Introduction

In recent years an increasing interest is paid to investigation of the properties of internal gravity
waves (IGW), arising as a result of vertical density stratification of the gas, and play an important role
in the dynamics of both the lower and upper atmosphere and ionosphere of the earth and other planets.
Grown interest, first of all, is caused primarily due to the understanding of the fact that these waves can
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propagate over hundreds or thousands of kilometers from the source without significant attenuation.
Propagating with group velocity the IGW provide an efficient transfer of energy, heat and momentum
from the troposphere into the upper atmosphere (which exceeds even the energy supplied by the solar
wind), where they influence on the thermal and dynamic regimes (Francis, 1975; Kim and Mahrt, 1992;
Nakamura et al., 1993; Rishbeth

and Fukao, 1995; Fritts et al., 2006; Alexander et al., 2008; Hecht et al., 2009; Alexander, 2010).
Latest numerical experiments (Gavrilov and Fukao, 2001; Alexander and Rosenlof, 2003; Alexander et
al., 2010) show that an adequate description of climate change and the circulation of the middle
atmosphere requires taking into account the accelerations of the background flows and heat inflows
generated by the waves (especially by IGW) propagating from the troposphere.

Numerous theoretical and experimental studies have established that the source of IGW motions in
the atmosphere and ionosphere can be: an earthquake (Liperovsky et al, 1992; Hayakawa, 1999),
volcanic eruption (Cheng, Huang, 1991), magnetic and sea storms (Testud , 1970; Golitsyn et al, 1975),
hurricanes, typhoons, tornadoes, (Kuester et al., 2008; Ming et al., 2010), the solar eclipse (Chimonas
and Hines, 1971), jet flows (Bertin, et al. , 1978), the terminator (Burmaka et al, 2003), spans of
meteors (Pokhotelov et al., 1995), launching of powerful rockets (Burmaka et al, 2003), the polar and
equatorial current systems (Chimonas and Hines, 1970), as well as industrial, military and nuclear
explosions of big strength (Tolstoy and Herron, 1970; Drobjev et al, 1986; Shaefer et al., 1999)).

One of the important properties of IGW is their significant influence on the distribution of the
electromagnetic waves in atmospheric-ionosphere layers (Rastogi, 1981; Gershman, 1974).
Consequently, ionosphere electric currents and electromagnetic fields may re-influence the wave
properties of IGW at ionosphere altitudes. In the ionosphere, in contrary to the lower layers of the
atmosphere, investigating the dynamics of wave processes non-uniform and non-stationary properties
of the wind process, the turbulent state of the lower ionosphere and the influence of non-uniform
electromagnetic forces should be taken into account. These factors, which are due to the low density
medium in the ionosphere and the relatively high conductivity of the ionosphere gas, are strongly
pronounced and they can sufficiently affect the propagation characteristics of wave patterns.
Consequently, the general circulation in the ionosphere must have specific features that are absent in
the troposphere.

The stationary problem of the existence of ionosphere wave disturbances in case of rectilinear
uniform medium flow (for large-scale Rossby type waves) has been discussed for the first time in the
work of Dokuchaev (1959). It has been revealed that in the theoretical study and interpretation of the
dynamics of the winds above 100 km it is necessary to consider the possible deviations from the
geostrophic winds associated with the action of electromagnetic forces. Further, a number of other
works have appeared (Hines and Reddy, 1967; Aburdjania and Khantadze, 2002; Aburjania et al.,
2005; Aburjania et al., 2006 and others), which studied the non-stationary evolution of wind structure
in the conducting ionosphere medium under the influence of the spatially non-uniform geomagnetic
field.

The action of the geomagnetic field, on the one hand, leads to the inductive damping of the waves
associated with Pedersen or transverse (with respect to the geomagnetic field) conductivity, on the
other one - to the gyroscopic effect due to the Hall conductivity of the ionosphere acting on the
perturbation like the Coriolis force. As a result of the joint action of spatially non-uniform Coriolis and
electrodynamic (related to the geomagnetic field) forces the new type waves with different
characteristics from the usual waves in the neutral medium may exist in the ionosphere. These waves
can be called as magnetized waves.

The results of long-term observations (Gossard and Hook, 1975; Kazimirovskii and Kokourov,
1979; Pedloski, 1979) also show that at the atmospheric-ionospheric layers the spatially non-uniform
zonal winds - the shear flows are permanently present, produced by nonuniform heating of the
atmospheric layers by the solar radiation. In this context the problem of the generation and evolution of
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ordinary and magnetized waves at different layers of the atmosphere during their interaction with non-
uniform zonal wind (shear flow) becomes urgent.

Interest to the shear flows, in general, is due to their widespread implementation in the near-Earth space
(as noted above), astrophysical objects (galaxies, stars, jet emissions, oceans, etc.), and in the
laboratory and technical equipments (pipelines, gas pipelines in the plasma magnetic traps,
magnetohydrodynamic generators, etc.). The shear velocity represents a powerful source of various
energy-consuming processes in the continuum. Canonical (modal) approximation of the linear wave
processes - the spectral decomposition of the perturbations according to time with further analysis of
Eigen values in the shear flows looses from the sight very important physical processes such as:
transient amplification and mutual transformation of the linear wave modes (Reddy et al., 1993;
Trefenthen et al., 1993).

A rigorous mathematical description of the specifics of the shear flows found out (Reddy et al., 1993)
that at the canonical (modal) analysis of the linear processes the operators in the dynamic equations are
not self-adjoint (Trefenthen et al., 1993) and, consequently, the eigen functions do not create
orthogonal system, they hardly interfere with each other. This circumstance, for correct description of
the phenomena, makes it necessary to estimate the results of interference of the eigen functions, which
sometimes presents a huge problem.

There is another approach - so-called non-modal analysis of linear processes in the shear flows. In this
approach a modified initial value problem (Cauchy problem) is solved by tracing the temporal
evolution of spatial Fourier harmonics (SFH) perturbations without any spectral expansion in time
(Graik and Criminale, 1986; Chagelishvili et al., 1996). Being the optimal language, the non-modal
approximation greatly simplifies the mathematical description of the linear dynamics of disturbances in
shear flows and allows identification of the key events (due to the non-orthogonality of the linear
dynamics) that escaped from the view in a modal analysis.

In this paper we study the linear and nonlinear stages of evolution of IGW in shear zonal flows (winds)
in different regions of the ionosphere. At the initial linear stage in the dynamic equations the perturbed
hydrodynamic quantities are given by SFH, which corresponds to non-modal analysis in a moving
coordinate system along the background wind. Non-modal mathematical analysis allows replacement
of the spatial non-uniform nature of the perturbed quantities, associated with the basic zonal flow, by
temporal one in the basic equations and trace the evolution of SFH disturbances according to time.
Currently, the results of numerous observations and experiments reveal the wave motion in a wide
range of frequencies from the acoustic to the planetary ones in the atmosphere-ionosphere environment
on almost all altitudes. In atmospheric acoustics the focus is laid on the study of internal gravity waves
(IGW), representing fluctuations of atmospheric and ionospheric layers, the nature of which is mostly
determined by gravity force. These oscillations are going with the frequency, at which the wave speed
is comparable with the acceleration of gravity force. Therefore, for definiteness, we assume that their
periods range from 5 minutes to 3 hours, and the wavelengths - from 100 m to 10 km.

In this paper, a property of internal gravity waves presents particular interest to us - propagating
vertically up quite easily in an isothermal atmosphere, IGW tends to increase the amplitude of the
hydrodynamic velocity exponentially with height, which follows from the conservation of energy when
the density of the medium decreases with height growth (Hines, 1960; Gossard and Hook, 1975). Thus,
even for the waves, the initial amplitude of which is small, the nonlinear effects at sufficiently high
altitude becomes significant and must be taken into account. Indeed, it is clear that this growth can not
be continued indefinitely. At some heights velocity becomes so large that the nonlinear effects can join
the game. These effects stop the growth of the oscillation amplitude through the nonlinear interaction
between the modes, the perturbations’ energy redistribution (saturation of the waves) and, for example,
self-organization of IGW vortex structures (Aburdjania, 1996, 2006). Nonlinear vortex structures
transfer the trapped particles of the medium. Reaching the critical heights, the IGW structures,
interacting with each other and medium, may form the atmospheric turbulence (Waterscheid and

67



Schubert, 1990), that creates real threats to aviation safety, but also leads to a mix of chemicals,
released from the lower atmosphere, chemical reactions between them and the formation of potentially
harmful compounds (Friedrich et al., 2009). Therefore, the IGW structures may also influence the
formation of "space weather" by generating irregularities in the ionosphere (Schunk and Sojka, 1996).
The aim of this paper is theoretical investigation of the peculiarities of generation; intensification and
further nonlinear stage of evolution of IGW structures due to the presence of local inhomogeneous
zonal wind (shear flow). Section 2 explains the model of the medium and basic hydrodynamic
equations for the lower ionosphere. In Sec. 3 we briefly outline the main principles of non-modal
mathematical analysis and simulation results of the generation and intensification of magnetized IGW
in the linear stage. In section 4, a model of the nonlinear hydrodynamic equations for the lower
ionosphere is displayed, which describes the interaction of magnetized IGW structures with a shear
flow. In Sec. 5 we examine the issue of the stability of the waves in shear flow and derive a necessary
condition for instability. Generation mechanism of nonlinear vortex structures by non-uniform zonal
wind is analyzed in Section 6. In Section 7 we study the characteristics of energy transfer by the IGW
structures in the dissipative ionosphere with the shear flow. Discussion of the results is carried out in
Section 8.

2. Model of environment and initial dynamic equation

Let’s introduce a local system of Cartesian coordinates X, y, z with the axis xdirected to the
east, Yy axis — to the north and the zaxis —vertically. We are interested in low-frequency wave motions
in the ionosphere medium (consisting of electrons, ions and neutral particles) with o << ke, (where ®
and k— the characteristic frequency and wave number of perturbation, respectively;
¢, =(vP, /po)l/2
kinetic pressure, p, —the equilibrium density of the medium) with a horizontal spatial scale L, of order

—the speed of sound, y=c,/cy —the ratio of specific heats, P,—the equilibrium gas-

of 10km, the wvertical scale L,is much smaller than the scale height H

(L, <<H:d1np0dz:cs2 /(yg)) and the time scale tof the order of 5 minutes <t< 3 hours.
Herewith, the dynamic properties of this medium, and movements of the large step anew are
determined by a neutral component, because of the condition N.; /N <<1 (where N_,N; =N and
N, - the concentration of electrons, ions and neutral components, respectively). The presence of

charged particles causes the electrical conductivity of the medium and the appearance of the
electromagnetic Ampere force.

For considered class of perturbations the effective magnetic Reynolds number is relatively small
R = 1,0,V L <<1 (where p, is the permeability of free space, G 1s the effective conductivity of
the ionosphere, V and L - characteristic values of velocity and perturbations, respectively), which is

quite well done almost right up to F-layer of the ionosphere (Gershman, 1974; Dokuchaev, 1959;
Kamide and Chian, 2007). Consequently, for the lower ionosphere, we can neglect the induced

magnetic field b = R, B and the vortical electric field E, ~ R (VB) that arise by virtue of variation

of b. Consequently, for the class of wave perturbations the magnetic field can be assumed given and
equal to the external, spatially non-uniform geomagnetic field B,(B=b+B, ~B,,E, —»0). It

satisfies the equation divB, =0, rotB, =0. At such induction free approximation consideration only
of the current j is sufficient, arisen in the medium, ignoring the magnetic field generated by this
current. In this case, the effect of geomagnetic field B, on the induced current j in the ionosphere
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plasma leads to consideration of the electromagnetic Ampere force [j X BO] in the known equations of

the dynamics of the ionosphere (in addition to forces: pressure, Coriolis and viscous frictions). This
force causes the inductive damping (due to Pedersen currents) in the ionosphere of the earth, not less
significant than usually viscous damping, especially in F region (Gershman, 1974; Dokuchaev, 1959).
Based on the above discussion, the basic properties of internal gravity waves in the ionosphere is
advisable to consider as the initial equation that for two-dimensional motion in the plane (x, z)
(0/0y =0; with velocity V(V_,0,V,), where it’s assumed the acceleration to be defined due to the

gravity acceleration, pressure gradient, Coriolis forces, the volumetric electrodynamic and viscous
frictions (Gershman, 1974; Dokuchaev, 1959; Gossard and Hook, 1975).

8—V+(VV)V:—E+g—2{QOXV}+l{ijO}+vAV, (1)
at P P
For exclusion of high-frequency acoustic modes, let’s use the condition of incompressibility of medium
V-V =0. )
Then, the continuity equation can be chosen as the equation of medium density in the form:
dp _0p
—=—"+(VV)p=0 3
a otV )
and the medium state equation:
‘Z—f+(vv)P=0. 4)

Here, as wusual, p=N M=p,(2)+p'(X,z,t)is the density, P =P,(z)+P'(x,z,t)—pressure,
g = —g e, — the gravity acceleration; e, — the unit vector along the vertical direction, i.e. along the axis

z. Variables with index zero mean atmospheric parameters in the unperturbed state, and values with a
prime — the disturbed ones (hereinafter, for simplicity, the primes are omitted from the quantities). M is

a mass of the ion and neutral particles (molecules), v - kinematic viscosity, A =08%/06x* +0%/06z* —
two-dimensional Laplacian. Electromagnetic force [ijO] largely determines the specificity of
ionosphere motions (Aburjania et al., 2006). Induced current density is determined from the
generalized Ohm's law for the ionosphere (Gershman, 1974):

. c
j=0Eq+0, EdJ_+B—H[B0 xEql, (5)
0
where the parallel o (in the direction of the magnetic field B), Pedersen or transverse o (transverse

to B,) and the Hall conductivities G, are determined by the following expressions

1 1
GH = CZN[_‘i‘ j s
mv, My,

\Y \%
Cp = e’N 5t RN (6)
m(ve +coBe) M(vin+coBi)
0) Og;
oy = ezN Be _ Bi ,

2 2 2 2
m(ve +(0Be) M(vin +(0Bi)
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where e, m, v, =v +v, , 0 =eB,/m are charge, mass, frequency of collisions between

en 2

electrons and ions and neutral molecules and electron cyclotron frequency, respectively; v. —and

op; =eB,/M the corresponding values for the ions. Assuming the ionosphere to be quasi-neutral with
a high degree of accuracy, we have neglected the electrostatic E, = —V® ( @ - electrostatic potential)
and vortex parts E, of the electric field. Thus, in Eq. (5) the electric field strength, taking into account
the medium motion, is determined only by dynamo - field (Gershman, 1974; Dokuchaev, 1959)

E, =[VxB,]. (7)
Geomagnetic field B, (B, ,B,,B,,) is considered to be dipole, which in chosen coordinate system

has the following components (Dokuchaev, 1959)

By, =0, By, =-B,sin0’, By, =-2B,cos0’, (8)

where B, = 3,5 x 107° Tesla (T) is a value of the geomagnetic field induction at the equator. In this

1/2
case, the full geomagnetic field induction is B, = Be(lJr3cos2 9’) and 0'=mn/2-¢,¢ -

geomagnetic latitude. In the same coordinate system for the components of the angular velocity of the
Earth rotation Q, (Q Qs QOZ) it can be written

Further it’s assumed that the geographic ¢ =n/2—-6 and geomagnetic ¢ latitudes are coinciding and

0x ?

the perturbation is located near latitude ¢, =n/2-9,,.
The equilibrium density of the medium is stratified due to gravitational forces. Therefore, in the
thermosphere, the equilibrium density P, varies exponentially according to altitude

po(2) = p(0) exp(— gj (10)

For definiteness, we will consider ionosphere E-region, which is located at altitudes of 80—150
kilometers from the Earth's surface. In this region the equilibrium parameters of the medium have the

following hierarchy: v, ~ v OpOp; >> Vi, Ve, and vy, >> oy, which allows simplification of the

en

expression for the induced current (5). Herewith, the condition v, >> wg; means that the ions are un-

magnetized and their speed across the geomagnetic field coincides with the velocity of the neutrals
(Aburjania et al., 2005), i.e. ions are completely entrained by the neutral ionospheric winds. However,
the electrons are magnetized wg, >> v, , and they are frozen in the geomagnetic field. In this case, the
Hallo; =en/B, and Pedersen o, conductivities are subject of the following inequality
Cp R OyO®g; / Vi, << 0y (Aburjania et al., 2005). For numerical calculations we use typical values of
the medium parameters (Gershman, 1974; Ginzburg and Rukhadze, 1975): N/N, ~ 1078 -107°,

vy ~10°c7, v, ~10%c, v, =10°c™" v, ~10%c7", wp ~107c, 0 ~10%s7! 0, *3x107*S/m
and op = 107*S/m. In the equation of the ionosphere motion (1) the part of the contribution of the

Lorentz force eNB,, /p, is associated with the Hall currents and the total contribution of the Coriolis
force 2Q, has the same order ~107*s™'. In addition, we take into consideration that the ratio N/p,

does not depend on the vertical coordinate (height) z (Gershman, 1974). Herewith, the characteristic

frequency of IGW (®~107¢™") is significantly higher than the Coriolis and Hall’s gyroscopic
frequencies. Based on these estimations, we can conclude that the contributions of the full Coriolis and
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Lorentz forces, associated with the Hall currents, have negligible impact on the dynamic properties of
IGW. However, inductive damping, stipulated by Pedersen conductivity (especially in the F-region), as
well as viscous damping, can not be neglected how small they can be. In investigation of the dynamics
of wave disturbances in shear flows they are important as a way of redistribution of energy of the
system that provides sustainable self-maintaining of the nonlinear solitary structures in the medium.

Further, the motion equation can still be more simplified if we consider the fact, that perturbation of the
medium density by internal gravity waves does not exceed 3 —4% (Gossard and Hook, 1975; Gill,
1982). Accordingly, ratio of the perturbed density with the unperturbed one has the order

p'/py ~(1—-4)x107%. Based on the aforementioned, in the initial equation of motion (1) we can
neglect p’ in comparison with p,(z) before the inertial, Coriolis and viscous terms and using the
Boussinesq approximation, we obtain the following motion equation:

Po(2) %+(VV)V) =-VP+pg- GPB(Z) (V_BO (VE.;]SO)J +po(2)vVAV (11)

0

The system of equations (3), (4) and (11) presents the initial closed system of equations for both
linear and nonlinear dynamics of IGW in their interaction with the geomagnetic field in the dissipative
ionosphere (D, E, and F -regions).

3. Generation and intensification of IGW at linear stage of evolution

To study the linear stage of interaction of internal gravity waves with the local non-uniform zonal
wind and geomagnetic field, let’s linearize the system of equations (3), (4) and (11) on the background
of a plane zonal shear flow (wind), which has the velocity V,(z), non-uniform along the vertical:
V=V,(2)+V(x,2,t), p=py(2)+p(x,z,t), P=Py(z)+P(x,z,t). Here V,(z)is the background
zonal wind velocity which for the vertical shear flow is given as:

Vo(2)=vy(z) e, =A-z-e, (12)
where A > 0- constant parameter of the wind shear, e, - a unit vector directed along the axis x.

In the selected local rectangular coordinate system for the components (11), (2), (3) and (4) we obtain
the following system of linear equations:

p{% + Vo(z)a%ij = —Z—z —poVo(2)V, =GBV, +p,VvA, V,, (13)
p0(§+vo(z)a%jvz =—Z—1Z)—p0g—GPB§VZ +poVvA |V, (14)
(%"‘%(@%)P = —%’VZ, (15)
(§+V0(z)a%jP:—d(%)Vz, (16)
8(;;" +aa\;Z =0. (17)

Here V;) (z) =dv(z)/dz. In this system of five equations (13) - (17) any four of them creates a closed
system. To facilitate further research, we choose equation (13), (14), (15) and (17) as a closed system.
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3.1. The local dispersion equation

The system of equations (13) - (17) presents partial differential equations with variable coefficients,
depending on the spatial coordinate z. Therefore, to analyze the existence of nontrivial solutions at least
at the initial stage of the evolution of wave disturbances, a local approximation is necessary, when the
coefficients of equations (13) - (17) can be assumed locally uniform (constant). Then, for analyzes of
the spectral characteristics, described by these equations of the disturbances, the Fourier expansion
should be performed according to the spatial and temporal variables (Mikhailovskii, 1974). In
Consequence to the exponential fall of the equilibrium density of the medium (10) with height, we seek
a solution of equations (13) - (17) in the form of plane waves (Hines, 1960; Golitsyn, 1965; Gossard
and Hook, 1975):

V,,(x,z,t) =V, (k,.k,)explilk, x + (k, —i/2H)z - ot jdk, dk,,
(P,p)(x,2,t) = [(P,p)(k ..k, )expli[k x + (k, +i/2H)z - otk  dk ,, (18)
where the spatial Fourier expansion of the wave disturbances is carried out; k (k,,0,k,) — wave
vector and o (k,,k,) - frequency of the waves. Inserting (18) into equations (13) - (15) and (17), we

obtain the following dispersion equation:

2 2
-k o,B

R I e S
K K Po

i) B:
kx(kz+ijv0+(k§+%] OrZ0 L yK2 || =0. (19)
2H 41 | p,

1/2

Here, we introduce the notation: ®, =(g/H)"'~ >0 — frequency of Brunt-Vaisala for stably stratified

incompressible ~ isothermal ~ atmosphere;  K* =k +k. +1/(4H?), K; =K:-ik, /H,
K> =k} +k;—1/(4H%), . Assuming the wave number K to be real and frequency
0=, +1y, |y| << ®, to be complex, from (19) we get the expressions for the spectrum of linear
fluctuations
)
®o Vo g Vo
—=v,— +— 1+———, (20)
k, ° 4K’H’T K \/ 16K ’H? 0
and decrement (increment) of the perturbations
c,B; B; ,
k2| 2+ VK2 +(k§ + lzj(cp : +VK§J_kxsz0
Po 4H Po
y=- 1)

v
2K [ 14— 20
4K H(w, —k,v,)
In the absence of shear flow the formula (20) transforms into the expression for the frequency of
ordinary internal gravity waves (Golitsyn, 1965):
k, o,
(k2 +K2 +1/4m)) "
Formula (21) expresses the damping decrement of IGW due to induction (Pedersen) and viscous
damping in the ionosphere medium:

0y =+ (22)
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c,B; B?
k2| 2 4 vK2 +(k§ + 12j[6" 0 +vK§j
Po 4H Po

=— , 23
Y K (23)
According to (22), phase velocity of linear IGW is in the range:
- Vmax =< Vp < Vmax > (24)

where V.. =2Ho, = 2(gH)"?in incompressible atmosphere. IGW is a low-frequency branch of

acoustic-gravity waves (AGW), occupying an intermediate position between the frequency of inertial
oscillations ®; = 2Q, and the frequency of the Brunt-Vaisala for stably stratified incompressible

gr O <Oy <O, (Gershman, 1974; Gossard and Hook, 1975). For the height
of the uniform atmosphere H = 4.5 + 6 km, we can estimate the value of maximal phase velocity of
linear IGW V=~ 440 m/s, the frequency o, ~ 1.7x107% and Q, ~107*. So, IGW disturbances

isothermal atmosphere ®

1

cover the following range of low-frequency oscillations 10 ¢ < <1.7x1072¢™" - and can be

supersonic V, = ¢, ~ 330 m/s.

Considered waves have frequency limit o, and gravitational effects play an important role for them, as
reflected in their name - IGW. From (22), it follows that for practically important case of relatively
short waves, kﬁ >> ki and k,H>>1, and phase (V, = (0/k*) k) and group (Vg =V o) the

velocities of IGW in the windless atmosphere are given by:

ok’ o,k ® ok
_ Pgtx _ehx __e __Pgtx
x = 0 s Vp, = % 5 Vi —E, Vg, =- % . (25)
It is evident that short IGW possess strong spatial dispersion. The direction of the phase velocity is
close to vertical, [V, |>> ‘Vpx , and the group speed is almost horizontal, |V, |>> ‘ng . In the long-

wave case k, H <<1,IGW is almost dispersion-less.
Let’s estimate appropriate wavelengths for IGW in the dissipative ionosphere. At ground level the
kinematic molecular viscosity is determined as v, = 1.3x107°m? /s, at the level of the E-layer (~110

km) —v,,, #1.3x10°m*/s and at the level of the F-layer ((250-300)km) —v,5, ~1.3x10°m* /s

(Gossard and Hook, 1975). Appropriate minimal lengths of IGW with period 10 minute in the
presence of kinematic viscosity for near Earth regions is A, 1 10" m and with the height growth will

increase correspondingly an appropriate minimal IG wavelength and for E-layer it would be A, [l 10
m, for F-layer —A,,, [ 10 km (Gossard and Hook, 1975). Coming through this and taking into account

that the turbulent viscosity in the low atmosphere increases the IGW scale [Gossard and Hook, 1975],
further we will consider the gravitational waves, the wavelengths of which fall into the range 100 m
<A<10km.

Let us estimate the damping rate of IGW. For ground level the parameters of the medium and the

waves areo, =5x107 S/m, p,=1.3kg/m’, B, =0.5x107* T, A=10* m,v, ~1.3x10°m* /s and
according to (21), viscous damping decrement of IGW structures is vy, ~k’v~5x10""s", the
decrement of the induction decay —vy,,~oc,B;/p,~10"" s". For E-layer the parameters of the

medium and the waves are G, = 3x10™ S/m, Py = 1071 kg/m3 , By = 0.5x10* T, A~10*m,

73



Vi #1.3x10°m* /sty #kPv~5x107 5", v, ~0,B; /p, ~107 5. For F-layer we use the
typical values of parameters o, ~en/B,[J10™ S/m, G, ® Oy, /vy, [ oy, ;] 3x10% 57,
v, <1057, v #1.3x10°m* /s. For damping rates we obtain correspondingly: 7y, , ~107" s,
Yoo ~107 s7. So, at the different levels of ionosphere the values of the viscous and induction

damping of IG structures are different, and it should be considered in dynamic problems involving
IGW structures.

It should be noted, that according to (20), the non-uniform zonal wind greatly expands the range of
IGW in the ionosphere. Moreover, the shear flow feeds the medium with energy (see formula (21)),
which is responsible for the generation-swing of IGW and development of linear shear instability with
a characteristic growth rate:

k k
Ya~ ﬁA : (26)

From (23) it’s obvious, that considered ionospheric shear flow can become the source of the instability
at the condition y, =7 ,v,. According to (26), for generation of the IGW structures it is necessary the

shear flow velocity to have even first derivative according to the vertical coordinate, different from
zero (vy(z) = A #0). As it was mentioned in the works (Margetroyd, 1969; Mayer et al., 1990), the

typical value of the dimensional parameter of the shear flow (A)s™' for the ionospheric F-region
equals A = V;) ~(0.015+0.15)s ™" as well. Taking it into account from (26) we obtainy L >107"s™". Thus,

the condition of the generation and amplification of IGW perturbations (inequalityy, >v ,y ) in the

different levels of the ionosphere (especially, in D and E -regions) can be satisfied and the shear
instability can be developed. This conclusion can be made by virtue of above used modal (local -
spectral) approach, which can’t give more information about the features of the shear flow instability.
But this doesn’t mean that such instability always arises and remains in such form. This is exactly due
to non-adequacy of modal approach at investigation of the features of shear flows, which is already
considered in the introduction. In shear flows the modal approach can detect only possibility of
instability. But for investigation of instability generation conditions and its temporal development in
the ionosphere an alternative approach, namely, non-modal mathematical analysis becomes necessary.
As it will be shown in the next section on the basis of more adequate method for such problems —non-
modal approximation, shear flows can become unstable transiently till the condition of the strong
relationship between the shear flows and wave perturbations is satisfied (Chagelishvili et al., 1996;
Aburjania et al., 2006), e. i. the perturbation falls into amplification region in the wave number space.
Leaving this region, e. i. when the perturbation passes to the damping region in the wave vector space,
it returns an energy to the shear flow and so on (if the nonlinear processes and self-organization of the
vortex structure will not develop before) (Aburjania et al., 2010). The experimental and observation
data shows the same (Gossard and Hooke, 1975; Pedlosky, 1979; Gill, 1982).

Thus, non-uniform zonal wind or shear flow can generate and/or intensify the internal gravity waves in
the ionosphere and provoke transient growth of amplitude, i.e. transient transport the medium into an
unstable state. In the next subsection we confirm this view by using a different, more self-consistent
method for the shear flow.

3.2. Non-modal analysis of shear instability of the waves in the ionosphere
Deriving (19) - (21) we used so-called local approximation, i.e. it is assumed that v,, v,, p, and P, are

locally uniform and we have provided the Fourier expansion of the physical quantities. Local
approximation has limited applicability in non-uniform environment, and especially in the shear flows
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(Mikhailovskii, 1974). In particular, the results received at such approximation are applicable only for
the initial stage of evolution of the perturbations. In general, if the background flow is spatially non-
uniform along the vertical, then we are not to provide Fourier expansion along the axis z. According to
the papers (Graik et al., 1986; Reddy et al., 1993; Trefenthen et al., 1993; Chagelishvili et al., 1996;
Aburjania et al., 2006), when studying the evolution of wave disturbances in shear flows at the linear
stage the non-modal mathematical analysis is better to be used than a modal approach (i.e. direct
Fourier expansion). Therefore, further analysis of the features of magnetized IGW wave at the linear
stage in the ionosphere should be conducted in accordance with a non-modal approach. For this
purpose, the moving coordinate system X,0,Y, is more convenient with origin O, and the axisY,,

which coincides with the same characteristics of the equilibrium local system XOY, the axis X,

flowing along the unperturbed (background) wind. In our problem, this transformation of the
coordinate system is equivalent to the following replacement of the variables:

X, =x-azt, y, =y, t =t 27)
or
0.0 n,0 2.0 0.9 9% (3
ot ot 0X, ox 0x, 0z 0z, 0x,
With these new variables equation (13), (14), (15) and (17) take the form
2
oV oP : 5 o2 o 0
X =———pgvoV, —0,BV, +v + —at V., 29
Po at, o, PoVoV, —OpDg Vi po{@xz £8Z1 léxlj} X (29)
oV 0 0 2 (5 oY
2= - At P-pyg—GpB,V, +v +| ——at V,, (30
Po &, (821 IGXJ Po8€ ~GpDBoy vV, TVPo ox’ (821 1&1] .» (30)
P _Poy (31)
o, H
an + i—Atli Vz =0. (32)
1) 0z, 0x,

Coefficients of the initial system of linear equations (13) - (16) depended on the spatial coordinatez.
Such mathematical transformations replace this spatial non-uniform property into temporal one (see eq.
(29) - (32)). Thus, the initial-boundary problem is reduced to the initial problem of Cauchy type. Since
now the coefficients of (29) - (32) are independent of spatial variables, the Fourier transformation of
these equations with respect to spatial variables x,,z, is already possible without any local
approximation, the temporal evolution of these spatial Fourier harmonics (SFH) we consider
independently:

. Voo lky kot
{anz(xlazlatl)} :J- _[ J»deldel ;( 1 1 1) xexp(ikxlxl +ik21zl). (33)
pﬂP(XDZl?tl) 55P(kx1’kzl’tl)

Here the factors with a tilde (for example \N/X ) indicate spatial Fourier harmonics (SFH) of the relevant
physical quantities. Inserting (33) into equations (29) - (32), and passing to dimensionless variables,

—00

Vv 5 —ip
TS0, V., = p:>£; P .
: o, H 2H?
g Po pOO‘)g
, A
(X,Z)SM; S=—; k., =k, ,H k,=k,(0)-k,St;
o , ,
g
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K=k +K2(0));v=——3 by = ;b, = ; (34)
o, H Po®, Po®g
for each SFH perturbed quantities, we obtain

a;/x =SV, +k P—[b, + vk*(0)]V,, (35)

T
a;zz =k, (0P -p—[b, +vk*(D]V,, (36)

T

op

==V, 37

5.V (37
k,V, +k, (1)V, =0. (38)

Closed system of equations (35) - (38) describes the linear interaction of IGW with a shear flow and the
evolution of the generated disturbances in the dissipative ionosphere medium. We note once again that
after these transformations the wave vector k (k,,k,(t)) of the perturbation became dependent on
time: k,(t)=k,(0)-k,S-1; k? (1) = (ki + kﬁ (1)). Variation of the wave vector according to time
(i.e. splitting of the disturbances’ scales in the linear stage) leads to significant interaction in the
medium even of such perturbations, the characteristic scale of which are very different from each other
at the initial time (Aburjania et al., 2006).

On the basis of (35) - (37) an equation of energy transfer of the considered wave structures can be
obtained, which gives possibility to identify the pattern of energy density variation with time:

dE(7) S 2

DS V@ V@4V, @V, @) b V[ 0.0,

Here the asterisk denotes the complex conjugate values of the indignations, b,(t) =b, + vk? (1),

(39)

by (1) =b, +vk?(t) and the density of the total dimensionless energy of the wave perturbations E(t)

in the wave number space is given by:
1 2 2 2
E[k(t)] = EQVX| +|V,|” +|p] ) (40)

It’s obvious that the transient evolution of wave energy structures in the ionosphere is due to the shear
flow (S#0, A=#0), dissipative processes - induction decay ( b, #0, b, #0) and viscosity ( v #0).
In the absence of shear flow (S=0, A=0), and dissipative processes (v =0, o, =0), the energy of the
considered wave disturbances in the ionosphere conserves dE(t)/dt=0. The total energy density of
the perturbations (40) consists of two parts: E[k]=E, +E,, where the first term is the kinetic energy

of perturbationE, = (“Vx|2 +|VZ|2D/ 2, and the second - thermobaric energy E, = |p|2 /2, stipulated

due to the elasticity of perturbations.

To emphasize the pure effect of shear flow on the evolution of IGW, for simplicity, we consider non-
dissipative ionosphere, i.e. we suppose that (v =0, o, =0). Further, we determine on the basis of
equation (39) what actually leads the evolution of the energy of the wave disturbance to — does their
energy increase or decrease? To answer we must calculate the right-hand side part of equation (39). For
this purpose we must find the solutions of equations (35) - (38) at b, =b, = 0. Differentiating (36)
with respect to time and using (35) (37) and (38), we obtain the second-order equation for the vertical
velocity components:
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sz

=0, (41)
1
where
2
R, (t) =4Sk, k., (@ , R,(1)=(28 + 1) k@ . (42)
" k(1) k? (1)
Equation (41) can be simplified by introducing a new variable (Magnus, 1976). Assuming
V, = Vexp[-(1/2)[R, (t")dr]. (43)
Let’s transform (41) to the equation of a linear oscillator with time dependent parameters:
V+Q*(1)V =0, (44)
where
2
V= C:i\!, O*(t)=R (’C)— R (’E)—— (t)=k12(a). (45)

The equation (44) is well known in mathematlcal physics. This is an equation of linear oscillations of a
mathematical pendulum, length of which changes. The value Q(t) determines the angular velocity of
the pendulum.

We solve the equation (44) in the adiabatic approximation (Zeldovich and Mishkis, 1972), i.e. when
dependence of (1) on time is adiabatically slow:

()] << Q°(v). (46)
Taking into account the definition of the parameter (2(t) the equation (46) can be rewritten as
S-[k, (0] << [k2 +k2(»)] . 47)

For the real ionospheric shear flow S <<1 (see definition (34)), so it can be said that the condition (47)
holds for a wide range of variations of wave numbers|kZ (1) =k,(0)- kXSr| . In other words, when the
temporary variation of |kz(’t)| is due to the linear drift of the wave vector in the space of wave

numbers, the condition (46) or (47) is valid in all stages of the evolution of IGW. In this case, an
approximate solution of homogeneous equation (44) can be represented as:

V= ?f(r) explip(1)], (48)

where C = const and
1 k ,(0)+k(0)
S kZ (1) + k(’t)

Substituting (48) in (43), and then - into the equations (35) - (38), we can finally construct the solutions
for physical quantities:

o(t) = I Q(t')dt'=

V,(0)-k*(0)

VA= o explip(7)]. (49)
Vo (0)-k, () K°©O ¢
Vi@ == e o oeleml (50)
1.2
p() =~ LD epliom) (51)

ki/z . kl/Z(T)
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P(0)-k*(0) : :
P() =m[zsk(r)—lkzm]exp[up(r)], (52)

k, Vi (0)+k,(0)V,(0)=0. (33)
Here, in the expressions (49) - (53) for the values of physical quantities are considered the real parts.

Substituting (49) - (51) into equations (39) and (40), we obtain an expression for the normalized energy
density of the Fourier harmonics:

2
= . B 1+kg
B B0 1+3) _ (54)
EO0) i1+ (k, -50)?]
and for the IGW energy transport equation (atb, =b, =0)
— 2
dE(n) _(1+13) -(, - $7) )

I .

Here for the convenience of numerical analysis a new parameter k, = k,(0)/k, 1s introduced.
Using equations (54) and (55) we can determine an expression for the increment (decrement) of the
shear instability T'(t) = (1/E(t))-dE(t)/dt in the non-dissipative ionosphere:

(1) = — Ko =57 _. (56)

1+ (k,—-S7)

Evolution of the dimensionless normalized energy density of the SFH (54) and the increment of shear
instability (56) are presented in Figures 1,2. In the initial stage of evolution when k, =k,(0)/k, >0

(when k,(t)>0) over time 1, 0<t<7t =k,(0)/(Sk,), the denominator (54) decreases and,
accordingly, the energy density of IGW increases monotonically and reaches its maximum value
(exceeding its initial value by an order) at the time t=1". Further, at ©° <t <oo the energy density
begins to decrease (whenk,(t) <0), and monotonically returns to its initial approximately constant
value. In other words, in the early stages of evolution, temporarily, when k,(t)>0and IGW

perturbations are in the intensification region in wave-number space, the disturbances draw energy
from the shear flow and increase own amplitude and energy by an order during the period of time

0<t<t =k, (0)/(Sk,)=100. Then (if the nonlinear processes and the self-organization of the wave
structures are not turned on), when k,(t) <0, IGW perturbation enters the damping region in wave
number space and the perturbation returns energy back to the shear flow over time 1° <t <o (Fig. 1,

2) and so on. Such transient redistribution of energy in the medium with the shear flow is due to the
fact that the wave vector of the perturbation becomes a function of time k =k(t), i.e. disturbances’

scale splitting takes place. The structures of comparable scales effectively interact and redistribute free
energy between them. Taking into account the induction and viscous damping (see equation (39)) the

perturbation’s energy reduction in the time interval 7° <7 <oo is more intensive than that shown on

fig. 1, the decay curve in the region t° <t<o becomes more asymmetric (right-hand side curve
becomes steeper), and part of the energy of the shear flow passes to the medium in the form of heat.

Thus, even in a stable stratified ionosphere (o)é >0), temporarily, during the time interval
0<t’ leO/(mg)~5-1035D 1.5 hour IGW-intensively draws energy from the shear flow and

increases own energy and amplitude by an order. Accordingly, the wave activity will intensify in the
given region of the ionosphere due to the shear flow (inhomogeneous wind) energy.
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4. Nonlinear model dynamic equation for internal gravity waves in the ionosphere

For further analysis of the evolution of the IG wave disturbances it’s necessary to construct a self-
consistent simplified nonlinear dynamic equation on the basis of equations (11) and (3), that takes into
account the presence of non-uniform zonal wind with velocity V, (z) =v,(z) e, in the ionosphere
medium. With this purpose writing equation (11) for horizontal V, and vertical V, velocity

components, and differentiating the first equation according to the coordinate z and the second equation
— according to the coordinate x, subtracting the second equation from the first one, we get:

0 0 v Oy g op
4 —~ Ay — Iy, Ay)=—=
(6t Vo(Z)an \j Vo(Z)5 (v, Ay) o o

dl
%K& o(z)—j——vou I, az}—

B c,B2
1 a< Bz)a‘“ Op 6"2’ P 0y~aw+vA2\|/ (57)
Po 0z 0z Po Oz Py  0Ox’
Similarly, we transform the continuity equation (3):
0 0 dp, Oy
—+vy(2)— p+I(y,p)=——— —. 58
(at of )axjp (v,p) & ox (58)

Here, according to incompressibility condition of the considered two-dimensional perturbation
(V-V =0)(2), the stream function introduced as

v, =Ny, v (59)
0z ox
and the operator of the Jacobian J(a,b)=0a/0x-0b/0z—0a/0z-0b/0x .

For convenience of the further analysis, we turn to usual field variables for an isothermal atmosphere
(Hines, 1960; Gossard and Hook, 1975):

V= \vexr{ 2Hj p=pex p(—%} (60)

Substituting (60) into (57) and (58), replacing the factor by exp[z/(2H)] =1 before the nonlinear term
(i.e. k,>>1/(2H) - short wavelength waves due to vertical), considering that the parameter

(GPB(Z) /py) does not depend on the coordinate z (Gershman, 1974) and introducing a new variable

R =gp/p,(0), we obtain the following closed system of equations:

d oY — Y ' _ .0
(a+vo(z)&j(m|/— "’ZJ{VO}(IZ) o(z)J—u( A )_—6—1:—

4H
_ _ 2 _
By (0’ ¥ | 9By 'V oo (61)
2 2 2 ?
Po 0z 4H Po ox
(a + VO(Z)—jR +J(V,R) = 0’ 2 OV (62)
ot Ox

Here o, =(g/ H)"? > 0 — frequency of Brunt-Vaisala for stably stratified incompressible isothermal

atmosphere, V;)(Z) =dv,(z)/dz and Vg (z) = d2V0 (z)/dz*.
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The system of equations (61) and (62) describes the nonlinear interaction of internal gravity structures
with an inhomogeneous zonal wind and the geomagnetic field in an incompressible isothermal
dissipative ionosphere.

5. IGW stability criteria in the ionosphere with an inhomogeneous zonal wind

Nature of plane shear flow greatly defines the evolution of wave disturbances in the environment.
Herewith, the shear flows in hydrodynamics and magneto-hydrodynamics are often unstable
(Mikhailovskii, 1974; Gossard and Hook, 1975; Timofeev, 2000). The presence of the terms

proportional to V'0 and VE) in equation (61) is related to the instability criterion (condition) of the shear

flow. In the linear approximation for small perturbations of the form(¥(x,z t),R(x,z t))=
(¥,(y),R,(y)) exp(ik, x —iwt), from the equations (61) and (62) follows an equation of the Orr-
Sommerfeld

2 2 2 2
—i v(d—z—kiJ +b0yk§—b0(d7—%J ¥, +(m—kxvo)[d——k§— 1 }‘Pl—

dz
' . kw2
k|20 v -T2 |y =0, (63)

Neglecting the dissipation effects (6, v — 0) from the equation (63) we get

1 k,(vo/H=vy) kiwé
>+ - > ¥ =0,
4H w_kaO (w_kaO)

¥y - {ki + (64)
where ‘Pl = d2‘1’1 /dz?. Equation (64) is a modification of the well-known Rayleigh equation
(Timofeev, 2000) (at 1/H — 0,0, — 0). To determine the shear flow instability criterion in our case,

we multiply (64) by V|, subtract the complex-conjugate expression from the result, and integrate the
resulting expression in the borders from z, to z, of the plasma flow:

V) *
ji(‘ﬂ*ﬂ—‘{’ld\yl sz_yf[ L . ! }kX(VO/H—VO)|‘P1|2dz—

7 dz dz dz nlo-k, vy o -k,v,

Zy kicoé B ki())é
(@-k,vo)® (0" —k,v)

Assuming that the perturbation frequency is complex ® =, +1y (where ®, is eigen frequency of

2}|‘Pl|2dz =0. (65)

Z]

linear IGW), and the wave vector k, - the real value, the imaginary part of equation (65) can be written
as:

5| 20kio;  k, (vp—vy/H)
o i bt

Z]

]|\1q|2 dz=0, (66)

(oF +7v o] +y

where ®, =, —k,v,. In the case of ®,, 7,

‘Pf‘ >0 from (66) the condition of linear instability of a

shear flow it follows:
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20,k2m? \ '
#+kx[vo _VEOJ 0. (67)

(o7 +77)

For a critical level of the ionosphere, where the phase velocity V, =®/k, matches the speed of
windv,, V, =v,(z) (i.e. o =o, -k, v, ~0), equality (67) can be rewritten as:

Vo (y)=ve/H=0. (68)
Conditions (67) and (68) can be called as modified Rayleigh condition (V'(; =0) for IGW at the
appropriate parameters of the zonal flow, waves and environments. Implementation of this equation
(67) (or (68)) in a resonant point z =z, of the shear flow is a necessary condition for instability.
In the Earth's atmosphere, the value V'0 /H can be both larger and smaller than V:) . So, according to (68)

the disturbance of the zonal wind may arise occasionally, such that in a critical layer z=z, the
condition ‘V:)‘ = ‘V;) / H‘ is fulfilled. This causes instability for some time, after which the zonal wind is

reconstructed and becomes stable again, etc.

Let’s briefly discuss the features and consequences of instability in simple shear flow of the
ionosphere, where the rate of the local wind in the environment varies linearly - v,(z) =S-z, where
S > 0- constant parameter of the wind shear. For such wind velocity profile the necessary condition for
the development of shear instability (67) is fulfilled at |c00| < |kXVO| . In this case, according to section
3, shear instability develops even in a stable stratified ionosphere and temporarily, during the time
interval 0 <t* =~ 62,5/(®,)~3-10* IGW intensively draws energy of shear flow and increases own

energy and amplitude by an order. Accordingly, the wave activity will intensify in this region of the
ionosphere due to the energy of the shear flow (non-uniform wind).

6. Nonlinear vortex structures governed by the shear flow

As noted above, the spontaneously excited internal gravity waves at different layers of the

ionosphere intensively draw energy from the shear flow at a certain point (in particular, for a time
interval 0 <t <1") in their evolution. Receiving energy, amplitude of IGW increases (by an order of
magnitude) and, accordingly, the nonlinear processes come into play. In this case, in the initial dynamic
equation (61) and (62) the nonlinear terms can no longer be neglected and the full nonlinear system has
to be investigated.
We proceed to study the influence of nonlinear effects on the dynamics of IGW structures in dissipative
ionosphere. The results of the observations and targeted experiments show (Bengtsson and Lighthill,
1985; Chmyrev et al., 1991; Nezlin, 1994; Sundkvist, et al., 2005) that nonlinear solitary vortex
structures can be generated at different layers of the atmosphere-ionosphere-magnetosphere. These
structures transfer trapped rotating medium particles. Moreover, the ratio of the rotational speed of the
particles U to the speed of motion of nonlinear structures U is given by U_/U>1 (Monin, 1978).

We introduce the characteristic time T and spatial scales L of the nonlinear structures. Using equation
(11), (61) we can establish the relation between quantities: U, ~V, U~ L/T. Similarly, for the ratio

of the nonlinear term with the inertial one, we have: (VV)V/(0V/ot) ~V/(L/T)~U_/U. Thus, the
nonlinearity plays an essential role for wave processes satisfying the condition U, > U . This estimation
shows that nonlinear effects play a crucial role in the dynamics of IGW-type wave, the initial linear
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stage of development of which is considered in previous section. Inequality U, > U coincides with the

anti-twisting condition (Williams and Yamagata, 1984). Satisfying just the latter condition the initial
nonlinear dynamic equations (61) and (62) may have the solitary (vortex) solutions (Williams,
Yamagata, 1984; Nezlin, Chernikov, 1999).

From the general theory of nonlinear waves is well known the fact (Whitham, 1977) that if in the
system the nonlinear effects are significant, then the principle of superposition can’t be applied and the
solution in the form of a plane wave is unjust. Nonlinearity distorts the wave profile and the wave form
differs from a sinusoid. If in a nonlinear system the dispersion (or non-uniform equilibrium parameters
of the medium) is lacked, all small-amplitude waves with different wave numbers k propagate with the
same speed and have the opportunity for a long time interaction with each other. So, even a small
nonlinearity leads to the accumulation of distortions. Such nonlinear distortion, as a rule, leads to the
wave front curvature growth and its upset (breaking) or to the formation of the shock wave. In the
presence of dispersion the phase velocities of waves with different k vary with the latter, the waves
with different k propagate with different velocities and virtually unable to interact with each other.
Therefore, the wave packet tends to spreading. For not very large amplitude the wave dispersion can
compete with the nonlinearity. Because of this before breaking the wave may split into separate
nonlinear wave packets, and the shock wave will not form. Indeed, in the real atmosphere, the shock
wave, as a rule, (spontaneously, without external influence) is not formed spontaneously. Primarily,
this means that in the atmosphere-ionosphere medium dispersion effects are strongly pronounced and
significantly compete with nonlinear distortion. If the nonlinear steepening of the wave is exactly
compensated by the dispersion spreading, there may appear the stationary waves such as solitary
vortices propagating in a medium without changing its shape.

It should be noted also, that the results of ground and satellite observations show clearly that in the
different layers of the ionosphere the zonal winds (currents) are permanently present, which are non-
uniform along the vertical (Gershman 1974; Gossard and Hook, 1978; Kazimirovskii and Kokourov,
1979). As noted in section 3, at interaction with non-uniform zonal flow the wave disturbance obtains
an additional dispersion as well as a new source of amplification and the nonlinear effects come into
play in their dynamics. Thus, the ionospheric medium with shear flow creates a favorable condition for
the formation of nonlinear stationary solitary wave structures.

So, we want to find a solution of the nonlinear equations (61) and (62) (a non dissipative
casev=0p =0) in the form of stationary regular wavesy =wy(n,z)and R =R(n,z), propagating

along the parallel (along the x-axis) with a constant velocity U = const without changing its form,
where 1 =x-Urt. Moreover, we consider the case when the wave structures propagate on the

background mean zonal wind, which has the non-uniform velocity.
In the non-dissipative case (v =cp, =0), passing to above mentioned auto model variables n and z

and considering that in this case 0/ 0t = —Ud/0n, the system of equations (61), (62) can be written as:

—Ui(A‘P— \P2J+8—R+J(‘P,A\P)=O, (69)

on 4H on
—Ua—R—mga—Tu(w,R):o. (70)

on on

Here we have introduced a new feature of the stream function

Y(n,2) =0 (2) +y(x,2), (71)
and the velocity potential @ (z) of the background zonal shear flow through the notation:
dd,(z
vo(z) = - 2202 (72)
dz
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Providing the so-called vector integration, according to (Aburjania, 2006), the general solution of
equation (70) can be presented as:

R(n,2) =0,z +F(¥ + Uz), (73)
where F(§) is the arbitrary function of its argument. Next, substituting (73) into (69) and performing the
similar transformation we get a nonlinear equation in the form of the Jacobian:

1| A + U dz N dF(¥ + Uz)
4H?  d(¥ +Uz)

The general solution of (74) has the form (Aburjania, 2006):
AP + Uj dz2 N dF(¥Y + Uz)
4H d(¥ + Uz)
where G(§) - a new arbitrary function of its argument.

As it was mentioned earlier, the results of observations and experiments show that vortex streets of
various forms can be generated in ordinary liquid and plasma environment in the presence of the shear
flow, as a consequence of the nonlinear saturation of Kelvin-Helmholtz instability. Such structures may
occur if the asymptotic form of the function G(§) in equation (75) is nonlinear (Petviashvili and
Pokhotelov, 1992; Aburjania, 2006).

We assume that the nonlinear structure move by a velocity U that satisfies the following condition:
dz2 N dF(¥ + Uz) - (76)
4H d(¥ + Uz)
It is obvious that (76) holds for IGW at only case when the function F(§) is a linear function of its

z,V + Uzj =0. (74)

z=G(Y +Uz), (75)

argument over the plane x, z, i.e.F = —U(¥ + Uz)/(4H?) . In this case, choosing an arbitrary function

G as the following nonlinear function G(&)=ygK’(exp(-2&/yy) (Petviashvili and Pokhotelov,
1992; Aburjania, 2006), equation (75) reduces to:

A(Y + Uz) = yix? exp[-2(¥ + Uz) /y{ . (77)
Now let’s choose an expression for the stream function of the background shear flow in the form:
®,(z) = Uz +y; In(x,2). (78)

Here \|18 characterizes the amplitude of the background structure, but 2n/x u 2n/x, presents the
characteristic size of the vortex structure and parameter of non-uniform background shear flow,

respectively.
Given (71) and using (78), the vorticity equation (77) can be transformed into:
2 0
Ay = ‘l’oKol:K e Vv —1] (79)
Ko
This equation has the solution (Mallier and Maslow, 1993):
_ ch(kz) + /1 -2 cos(kn)
¥(n,2) = ygln : : (80)

ch(x,z)

which is a street of the oppositely-rotating vortices. Substituting (80) and (78) into expression (71), we
finally obtain the solution:

¥ (M,2) = Uz+ ) In[ch(kz) + /1 - cos(kn)]. (81)
From equations (81), (78) and (59) we obtain the following expressions for the components of the
medium velocity and shear flow, respectively:
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sh(kz)
ch(xz) ++/1—1x; cos(kn) ’
V,(,7) =yl VKo (83)
ch(kz) +4/1- K(z) cos(kn)
vo(2) = =U =y, th(i,z) , (84)
At x, =1 the solution (81) describes the background flow to the type of shear zonal flow (84). At

V. (n,2)=-U-yx (82)

kg <1 in the middle of the zonal flow (84) the longitudinal vortex street will form (Fig. 3). Solution
(82), (83) with closed streamlines in the form of "cat's eyes" was first obtained by Lord Kelvin.
It must be mentioned that the nonlinear stationary equations (74), (75) also have an analytical

solution in the form of a Larichev-Reznik type dipole pair of cyclone-anticyclone (Petviashvili and
Pokhotelov, 1992; Aburjania, 2006) and vortex transverse chains (Aburjania et al., 2005).

7. Energy transfer by the vortex structures

In the dynamic equations of IGW structures (61) and (62) the source of convergence of external
energy due to shear flow (non-uniform wind), the terms with v (y), and divergence sources of energy

due to dissipative processes in the environment - terms of induction 6, and viscous v damping are
included obvious. The above mentioned nonlinear solitary vortex structures can self-sustain only at the
existence of an appropriate balance between the convergence and divergence of energy in the wave
perturbations in the ionosphere medium.

Further, we obtain the energy transport equation for the IGW vortex structures. With this purpose
we multiply the equation (61) by ¥ and (62) — by ‘R, then integrate them according to x and z.
After performing simple transformations of obtained relations we finally get the regularities of the
dynamics of energy of the IGW structures:

a_E:IVo(Z)%(Z—lPdXdZ—p—OyI(%Pj dxdz — 2280 I[(&‘Pj s }dXdZ
z

ot Po Po 0z 4H?
2’ AN TR
Y oW + oW +2 o dxdz, (85)
ox* oz* 0x0z
where
1 —v ¥? R?
E=—[|(V¥] + +— ([dxdz, 86
2{( f e m;}” (86)

presents energy of the nonlinear internal-gravity vortex structure.

Let’s mention, that the equation (85) is valid for linear as well as for nonlinear stage of evolution of
IGW perturbations. In this equation the first term of the right hand side describes transient sway-
generation of the IGW structures due to the shear instability; the second and the third terms — an
induction damping of the wave disturbances due to Pedersen conductivity, and the last term describes
the viscous damping of the perturbations. According to (85), for generation of the structures it is
necessary the velocity of the shear flow to have at least the first derivative with respect to vertical

coordinate different from zero (v,(z) # 0).
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As noted in section 3.1, the considered IGW perturbations in the linear mode have eigen
frequencies (22) and propagate along the Earth’s parallel (along the x axis). The induction and viscous
damping takes energy from these IGW structures and heat the ionospheric environment with a
decrement y (23), where k, = 2n/L,, k, = 2n/L,. In this case, shear flow temporarily supply
the medium with energy, causing generation - swing of IGW structures and the development of shear
instability with a characteristic growth increment y, (26).

Thus, the non-uniform zonal wind or shear flow can transiently generate and / or intensify the
internal gravity structures in the ionosphere and contribute to self-sustaining of IGW vortices
wheny, 2y. According to section 3.1, the condition of nonlinear self-sustaining of IGW vortex

structures at the levels of F-region of the ionosphere the condition (y, >v) is fulfilled, even with some

reserve, and considered vortex structures are long-lived.

Thus, the revealed internal gravity vortices in the ionosphere are sufficiently long-lived, so they can
play a significant role in the transport of solid matter, heat, energy and form strong turbulence state in
the medium (Aburjania et al., 2009).

8. Discussion and conclusion

In this article the linear stage of generation and further nonlinear evolution of IGW structures in the
dissipative stably stratified (mé > 0) ionosphere in the presence of shear flow (non-uniform zonal

wind) is studied. A model system of dynamic nonlinear equations describing the interaction of internal
gravity structures with viscous ionosphere, non-uniform local zonal wind, and the geomagnetic field is
obtained. On the basis of analytical solutions and theoretical analysis of the corresponding system of
dynamic equations a new mechanisms of linear transient pumping of shear flow energy into that of the
wave perturbation, wave amplification (multiple times), self-organization of nonlinear wave
perturbations into the solitary vortex structures and the transformation of the perturbation energy into
heat is revealed.

12000
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Fig. 1. Evolution of the non-dimensional energy density E(t) (formulae (54))
for the initial parameters: k, =10, S=0.1.

A necessary condition for shear instability of IGW at their interaction with local non-uniform zonal
wind, which is a generalization of the Rayleigh condition, is obtained.
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The equation of energy transfer by nonlinear wave structure in the dissipative ionosphere is
established. Based on the analysis of this equation it is revealed that the IGW structure effectively
interacts with the local background non-uniform zonal wind and self-sustained by the shear flow
energy in the ionosphere.

0.5

r(x)

-0.5| _ _ |
0 100 200 300
T=1%*

Fig. 2. Increment of shear instability I'(t) (formulae (56) ), as function of time
for the parameters: k, =10, S=0.1.

Linear amplification of IGW perturbation is not exponential as in the case of the AGW in the
inverse-unstably stratified (®, <0, when IGW can not be generated) atmosphere (Aburjania, 1996)),

but in algebraic-power law manner. Intensification of IGW is possible temporarily, for certain values of
environmental parameters, shear and waves, which form an unusual way of heating of the shear flow in
the ionosphere: the waves draw their energy from the shear flow through a linear drift of SFH in the
wave number space (fragmentation of disturbances due to scale) and pump energy into the region of
small-scale perturbations, i.e. in the damping region. Finally, the dissipative processes convert this
energy into heat. The process is permanent and can lead to strong heating of the medium. Intensity of
heating depends on the level of the initial disturbance and the parameters of the shear flow.

Fig. 3. Relief and current lines in the rest frame of the vortices W (n, y) — Uy, calculated
from formula (81) fory) =1, k=1, &, =0.5 (the longitudinal vortex street).
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A remarkable feature of the shear flow is the dependence of the frequency and wave number of
perturbations on time k, =k,(0)-k,St, k(1) = (ki +k§(r))” 2 In particular, frequency and wave
number transient growth leads to a reduction of scales of the wave disturbances due to time in the linear
regime and, accordingly, to energy transfer into a short scale region - the dissipation region. On the
other hand a significant change in the frequency range of the generated disturbances stipulates in the
environment the formation of a broad range of spectral lines of the perturbations, which is linked to the
linear interactions and not to the strong turbulent effects. Moreover, amplification of the SFH
perturbation and broadening of wave modes’ spectra occur in a limited period of time (transient
interval), yet satisfied the relevant conditions of amplification and a strong enough interaction between
the modes.

It should be emphasized that the detection of the mechanism of the intensification and broadening
of the spectrum of perturbations became possible within the non-modal mathematical analysis (these
processes are overlooked by more traditional modal approach). Thus, non-modal approach, taking into
account the nonorthogonality of the eigenfunctions of the linear wave dynamics, proved to be more
appropriate mathematical language to study the linear stage of the wave processes in shear flows.

The frequency of considered linear IGW perturbations varies in the interval of

107*¢™! <, <1.7x1072¢™" and includes low-frequency range of AGW. Wavelength lies in the

interval A ~100m +10km , the period — from 5 minutes to - 3 hours. Considering intermediate values of
the IGW wavelengths (k(J1/H, HO 10 km; o[l @, 1107s™") we find that the group and phase

velocities are of the same order V, 'V, [l o HI 1025 x10*m [0 10°m/s. This estimation agrees

with existing observations and they move with velocity (0.1+200) m/s in a random direction along the
horizontal lines, depending on daytime and nighttime conditions. IGW is characterized by an
exponential growth of the amplitude of the perturbed velocity at the vertical propagation in an
environment with exponentially decaying vertical equilibrium density and pressure (Hines, 1960;
Gossard, Hook, 1978). According to observational data, IGW disturbances manifest themselves in a
wide range of heights - from the troposphere to the upper ionosphere heights z < 600 km (Gossard and
Hook, 1975; Francis, 1975; Rishbet and Fukao, 1995; Hecht et al., 2010). At ionospheric altitudes
(above 90 km) the conductive medium strongly impacts on the IGW, causing its remarkable damping
due to local Pedersen currents.

On the basis of analytical solutions of nonlinear dynamical equations it’s shown that the internal-
gravity waves organize themselves (due to the shear flow energy) in the form of stationary solitary
vortex structures. The solution of the nonlinear equations has an exponential asymptotic behavior

~ exp(—K|r|) at |r| — o, 1.e. structures are strongly localized along the plane transverse to the Earth's

surface. Depending on the type of velocity profile of the zonal shear flow (wind) v (z), the generated

nonlinear structures maybe the monopole solitons, cyclone, anticyclone, dipole cyclone-anticyclone
pair, longitudinal vortex streets or transverse vortex chain in the background of non-uniform zonal
wind (see also Aburjania, et al., 2005). The presence of spatially non-uniform winds in the ionosphere
gives IGW the properties of self-organization and self-sustaining in the form of the aforementioned
nonlinear solitary vortex structures of different shapes.

Phase velocity of linear IGW occupies a range: —V, , <V <V, . in an incompressible

atmosphere, where V,,, =2Ho, = 2(gH)1/ 2 This means that if the source (for example, the above

mentioned nonlinear vortex structure) moves along x axes at a velocity greater than V the source

max ?
does not come in resonance with the linear internal gravity waves. Nonlinear vortices, moving faster
than the corresponding linear waves, can retain their nonlinear amplitude as far as they do not lose
energy by radiation of linear waves. It means that these sources can not excite a linear wave due to
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Cherenkov mechanism and can retain its initial energy (Stepanyants and Fabrikant, 1992). Thus, these
vortex structures can be generated, self-sustained and propagated with velocity |U| >V __ along the

horizon in any direction. For the height of the atmosphere H = 4.5 + 6 km, we can estimate the value
of maximal speed of linear IGW - V__ ~440m / sec. Thus, the identified vortex structures are

max

supersonic and do not loose energy by radiation of linear IGW in the velocity |U| <V, ., m/sregion.

It should be noted that the discussed nonlinear two-dimensional vortex structures are very different
from the atmospheric Rossby-type vortices (Larichev and Resnick, 1976; Aburjania, 2006). The main
difference is that the motion velocity of our vortices is completely symmetric, i.e. the structures can
move with velocities greater than the maximum phase velocity of linear waves in any horizontal
direction. While Rossby vortices can move to the west only at the velocities exceeding the maximum
velocity of Rossby waves. In the East such vortices can move with any speed as far as the linear
Rossby waves do not propagate in this direction. In addition, we assumed that the atmospheric-
ionospheric medium is isothermal. In case, when the equilibrium temperature T, of the medium is not

constant, in the expression of maximum velocity of linear IGW V. =2c (y— )2 /y, the termy —1
must be replaced by y—1+H(dT,/dz)/T,. Then, for temperatures, coinciding instability threshold
(ie. dInT,/dz<0) (Stenflo and Stepaniants,1995), and for y=14 we get
Vix < |U| << ¢, # 330 m/s a nonlinear stationary IGW structure can be generated in atmospheric-

ionospheric media .

Nonlinear vortex structures of large amplitude, very similar to those theoretically identified by us,
were found at atmosphere-ionosphere layers with satellite and ground observations and analyzed in the
papers (Bengtsson and Lighthill, 1985; Ramamurthy et al., 1990; Cmyrev et al., 1991; Nezlin, 1994;
Shaefer et al., 1999). The motion of medium particles trapped by vortex structures is characterized by a
non-zero vorticity VxV =0, i.e. particles rotate along the closed trajectories in the nonlinear
structures. Characteristic value of rotational velocity U is of the order or greater than the structure

velocity as a whole U , U_ > U. In this case, the structures trap the medium particles (whose number is

comparable to the number of passing particles) and moving in the environment, transfer these rotating
trapped particles. Therefore, being long-lived entities, IGW vortex structures can play a significant role
in the process of transfer of mass, heat, energy and in the creation of macro turbulent state of
ionosphere (Aburjania et al., 2009). In particular, the vortex structure can play the role of "turbulent
agent" or elements of horizontal macroscopic turbulent exchange processes in general circulation of the
ionosphere. Coefficient of horizontal turbulent eddy exchange can be estimated using the Obukhov-

Richardson formula (Monin and Yaglom, 1967): K, ~10°d** m?/s. So, for the typical size of vortices

d ~10km, we find that K, ~10 m?/s. This estimate (which must be regarded as an upper limit)

shows that the exchange processes between the upper and lower latitudes, the meridional heat transport
from north to south in the ionosphere can have macro-turbulent vortex nature (note that in the
ionosphere, the polar region is warmer than equatorial).

IGW structures are eigen degrees of freedom of the ionospheric resonator. Therefore, influence of
external sources on the ionosphere above or below (magnetic storms, earthquakes, artificial explosions,
etc.) will excite these modes (or intensified) in the first, (Aburjania and Machabeli, 1998). For a certain
type of pulsed energy source the nonlinear solitary vortical structures will be generated (Aburdjania,
1996; Aburdjania, 2006), which is confirmed by experimental observations (Ramamurthy et al., 1990;
Cmyrev et al., 1991; Nezlin, 1994; Shaefer et al., 1999; Sundkvist et al., 2005). Thus, these wave
structures can also be the ionospheric response to natural and artificial activity.
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I'enepauus, UHTEHCHU(PUKALMA U CAMO-OPraHU3alUsl BHYTPEHHH X~
rPaBUTAIMOHHBIX BOJTHOBBIX CTPYKTYP B 3¢MHO# HOHOC(epe ¢
HANPABJICEHHBIM CABUIOBBIM BETPOM

I'. AOypaxanua, X. Yaprazua

Pe3rome

N3ydena renepanusi, MHTEHCHU(UKaLUs W JAajbHEWIIass HEJIMHEHHass JWHAMMKAa BHYTPEHHHX
rpaBuTanoHHBIX BONH (BI'B) B ycroifumBo-cTpaTHGHUIMPOBAHHON TUCCHIIATHBHONH HOHOCHEpe ¢
HEOJHOPOAHBIM 30HAIBHBIM BETPOM (CIBHUTOBBIM TE€UYEHHEM). B CIOBUTOBBIX TEUEHMSAX OIEPATOPHI
JMHEHHBIX 3a/1a4 SBISIOTCS HECAMOCOIPSHKEHHBIMHU, a COOTBETCTBYIOIINE COOCTBEHHBIC (DYHKIIMHA —
HEOPTOTrOHAJIHBIMH, IT03TOMY KAHOHUYECKU-MOAAJIBHBIN MTOAXO0/ MaJIO IPUTOJIEH IPU U3YYEHNUN TaKUX
JBIWKEHNU. boree afekBaTHBIM JUIsl TAKUX 3a/1a4 CTAHOBUTCS HEMOJAJIBHBIN MAaTEMATUYECKUI aHAIIN3.
Ha ocHoBe HEMOAAIBHOIO MaTeMaTHYECKOIO aHaJIM3a IOJIy4YE€Hbl YPaBHEHHs JUHAMMKHU M IIEpEHOCa
sHeprun BI'B Bo3mymieHuit B moHocepe co COBUIOBBIM TedeHHEM. BwiBoauTcs HE0OXoaMMOe
yCIIOBHE KPUTEpPHUH HEYCTOMYMBOCTHM CABHMIOBOTO TedeHHs B MoHochepHOoil cpene. HaiineHo TouHoe
AQHAJIMTUYECKOE PEIICHHE KaK JIMHEHHBIX, TaK W HEJIWHEHWHBIX JUHAMWUYECKHX YPaBHEHUU
paccmaTpuBaeMbIX 3anad. HaliileH MHKpeMeHT caBUroBod HeyctounBoctd BI'B. BbiaBieno, urto
BpeMeHHOe ycwieHne BI'B Bo3mylieHHII TpOMCXOMUT HE SKCHOHEHIMAIBHO, a alreOpanyecKum —
cTerneHHbIM 00pa3oM. YacToTa U BOJIHOBOM BeKTOp reHepupyeMbix BI'B mon sBisitorcss GyHKIMSIMU
BpeMeHHM. Tak 4yTo, B MOHOC(Epe CO CIBUIOBbIM TEYEHHEM, BOJHOBBIE BO3MYILIEHHUS C IIHPOKUM
CIEKTPOM TOPOXKIAIOTCS € JIMHEHHBIM 3¢ (EeKTOM Aa)ke TOrAa, KOrAa OTCYTCTBYIOT HEJIMHEHHbIE U
TypOynenTtHeie d3pdexTsl. [IpoananusupoBana 3pPeKTHBHOCTD JIMHEHHOTO MexaHu3Ma ycuinenus BI'B
IPU UX B3aUMOACHUCTBUM C HEOJHOPOIHBIM 30HAJIbHBIM BeTpoM. Ilokazano, uro BI'B sddextusHO
YEpHarT 3SHEPrUI0 CIABUTOBOIO TEUYEHUS B JIMHEHHOM CTaauy DHBOJIIOIUU M CYLIECTBEHHO
YBEJIMYMBAIOT (Ha MOPSIOK) CBOIO SHEPruio M amIuutyny. C yBeIMUeHHEM aMIUIMTY]Ibl BKIIOYAeTCs
HEJIMHEHHBI MEXaHW3M CaMOJOKaIM3allMHd, W IPOLECC 3aKAHYMBACTCS  CaM-OpraHU3alueu
HEJIMHENHBIX, CUJIBHO JIOKanu30BaHHBIX BI'B Buxpebix cTpykryp. Tem camum nosiBiaseTcst HOBas
CTeNEeHb CBOOOJBI CUCTEMBI M IYTh 3BOJIIOIMH BO3MYILEHUN B Cpelde CO CABUIOBBIM TeueHueMm. B
3aBHCUMOCTH OT BUJa MPOoQMIs CKOPOCTU CABUIOBOTO TeueHMs HenuHeitHsle BI'B cTpykTypsl MoryT
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OBITh WM YUCTO MOHOIOJIbHBIM BUXPEM, WM BUXPEBOI JOPOKKOM, MIIM BUXPEBOM 1IEMOYKOM Ha (oHe
HEOJHOPOJHOTO 30HANBHOIO BeTpa. Hakoruienume Takux BHXped B HOHOC(hEpHOHl cpele MOXKeT
CO3/71aBaTh CHIBHOTYPOYJICHTHOE COCTOSIHUE.
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