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Abstract 

It is shown that in the Earth’s weakly ionized ionospheric E-layer with the dominant Hall conductivity new 

type of coupled Rossby – Alfvén – Khantadze (CRAK) electromagnetic (EM) planetary waves attributable by 

latitudinal inhomogeneity of both the Earth’s Coriolis parameter and the geomagnetic field can exist. Under 

such coupling new type of dispersive Alfvén waves is revealed. Generation of sheared zonal flow and magnetic 

field by CRAK EM planetary waves is investigated. The nonlinear mechanism of the instability is based on the 

parametric excitation of zonal flow by interacting four waves leading to the inverse energy cascade in the 

direction of longer wavelength. A 3D set of coupled equations describing the nonlinear interaction of pumping 

CRAK waves and zonal flow is derived. The growth rate of the corresponding instability and the conditions for 

driving them are determined. It is found that growth rate is mainly stipulated by Rossby waves but the 

generation of the intense mean magnetic field is caused by Alfvén waves.  

PACS numbers: 52.35.Mu, 92.10.hf, 94.20.wc  
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1. Introduction 

        Large-scale wave motions have the significant influence on energy balance in the Earth’s atmospheric 

circulation [1, 2]. However, the presence of charged particles in the electrically conductive weakly ionized 

ionosphere substantially enriches the conditions for propagation of different nature low-frequency wave modes. 

Numerous ground-based and satellite observations [3 – 20] show that planetary-scale (with wavelengths 

km310  and several days period) wave perturbations of electromagnetic (EM) origin regularly exist in 

different ionospheric layers. Increasing interest to the planetary-scale ultra-low-frequency (ULF) wave 

perturbations is caused by the fact that many ionospheric phenomena from the same frequency range can play 

the role of ionospheric precursors of some extraordinary phenomena 

___________ 
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(earthquakes, volcano eruptions, etc.) [21 – 23]
 
and also  appear as the ionospheric response to the anthropogenic 

activity [24 – 27].
 
Forced oscillations of that kind under the impulsive impacts on the ionosphere and during 

magnetospheric storms were also observed [21]. 
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              In recent years increasing number of theoretical and experimental investigations was devoted to the 

investigation of dynamics of Rossby type waves (induced by the spatial inhomogeneity of the Coriolis 

parameter) in the Earth’s ionosphere. Dokuchaev [28] first indicated the necessity of accounting for interaction 

of induced electric current with the Earth’s magnetic field on the winds dynamics.  The next step was done by 

Tolstoy [29] pointed out the importance of other global factor, acting permanently in the ionosphere - space 

inhomogeneity of the geomagnetic field on the dynamics of Rossby type waves in the Earth’s ionospheric E-

layer. The waves were entitled hydromagnetic gradient (HMG) waves. It was also shown that HMG waves can 

couple with the Rossby waves in the E-layer heights. He suggested that HMG waves may appear as traveling 

perturbations of the qS
 
current system producing from a few to several tenths of nT strong variations of the 

geomagnetic field. 

              Recently, in [30 – 34] was established new type of waves propagating in the ionospheric E-layer.  They 

can be considered as the generalization of tropospheric Rossby waves by the spatially inhomogeneous 

geomagnetic field B0. As distinct from HMG waves, these waves do not cause the Earth’s magnetic field 

significant perturbation and are produced by the dynamo electric field  Ed = v x B0 . Note that in addition these 

waves are caused by the Hall conductivity in the E-layer. The waves of such different from HMG waves nature 

were termed “magnetized Rossby (MR) waves” [32]. 

             Both HMG and MR waves compose so called slow long-period group of planetary waves having quite 

low phase velocities of the order of the local ionospheric winds (1 – 100 sm / ). At middle – latitudes, their 

wavelengths ~ 10
3
 km and longer, but the wave period alter from 2 h to 14 days. Correspondingly, the frequency 

falls in the range of 10
-4

 – 10
-6

 s
-1

. In the experiments [3 – 5, 9, 10, 14, 20] some characteristics of these waves 

are observed. 

            Under the space (latitudinal) inhomogeneity of the geomagnetic field and Hall effect new type of waves, 

so called fast large-scale EM perturbations in the middle-latitude ionosphere also can propagate. In contrast to 

the slow waves, the fast modes are associated with oscillations of the ionospheric electrons frozen in the 

geomagnetic field and are connected with the large-scale internal vortical electric field generation in the 

ionosphere, i.e. Ev = VD x B0, where VD = E x B0 /B0
2
 is an electron drift velocity.  The fast EM waves propagate 

along the parallels against the mean-zonal flow to the east as well as to the west. In E-region the phase velocity 

of fast waves is sufficiently high Bc   2 – 20 kms
-1

. Due to the dependence of cB  on the density of the charged 

particles the appropriate frequency of fast waves (   kxcB ) also changes almost by one order of magnitude 

during  daytime and nighttime. As compared to the slow waves fast modes have relatively high frequency in the 

range 10
-1

- 10
-4

 s
-1

 with the corresponding periods from 4 min to 6 h and the wavelength   10
3
 km. In contrast to 

the slow modes, fast EM planetary waves give rise to strong pulsations of the geomagnetic field 20 – 80 nT. 

Such new type of large – scale ULF wave EM perturbations in the ionospheric E - and F - regions first was 

theoretically revealed in [35 – 37], where the first classification of the EM planetary waves into fast and slow 

waves also is given. Such fast EM planetary waves are called Khantadze waves and were recorded in the middle 

and moderate latitudes during the launching of spacecrafts [18]
 
and fixed by the ionospheric and magnetic world 

network observations [9, 19, 38].  

 

            Extensive analysis of the planetary EM waves in the ionospheric E - and F - layers is given in [39 – 41]. 

It was shown that large-scale waves are weakly damped. New type of coupled Rossby waves with Alfvén waves 

first was revealed in [42], where the possibility of existence of the new spatially isolated  joint Alfvén – Rossby 

nonlinear vortical structures in the Earth’s ionosphere is also shown. We believe that the further investigation of 

the nonlinear dynamics of ULF planetary EM waves is so necessary. 

           In the given paper, we show that the action of the latitudinal inhomogeneity of both the Coriolis 

parameter and the geomagnetic field through the vertically propagating geomagnetic field perturbations lead to 

the coupled propagation of EM Rossby – Alfvén – Khantadze modes. By this fact the initial equations describing 

the appropriate nonlinear dynamics becomes 3D. The aim of the present paper is to investigate the possibility of 

mean zonal – flow and magnetic field generation by the EM coupled Rossby – Alfvén – Khantadze (CRAK) 

planetary waves in the ionospheric E - layer.  
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          Ground - based and satellite observations
 

 [1, 2] confirm the permanent existence of large-scale 

azimuthally symmetric band – like sheared zonal flows surrounding the globe at different layers of the Earth’s 

ionosphere and propagating along the parallels with inhomogeneous velocities along the meridians (see, e.g. [43] 

). Thus, the Earth’s ionosphere represents the dynamical system of different nature waves and zonal flows. 

Under such favorable conditions for nonlinear interactions different EM nonlinear stationary solitary structures 

can appear [42, 44]. 

       According to the one existing idea spatially inhomogeneous zonal winds (shear flows) can be produced by 

nonuniform heating of the atmospheric layers by solar radiation. First in [45] was suggested the generation 

mechanism of zonal flows by tropospheric Rossby waves in neutral atmosphere invoking parametric instability 

in terms of the kinetic equation for wave packets. The investigation of zonal – flow generation problem by 

Rossby waves was further developed in [46, 47] using the parametric instabilities mechanism on the basis of a 

monochromatic four – wave resonant nonlinear interaction. In these papers it was shown that zonal flows in a 

non – uniform rotating neutral atmosphere can be excited by finite – amplitude Rossby waves. Accordingly, 

these papers study the interaction of pump waves (Rossby waves), a sheared flow and two satellites of the pump 

wave (side – band waves). This approach is an alternative to the standard weak turbulence approach used by 

[45]. The driving mechanism of this instability is due to the Reynolds stresses, which are inevitably inherent for 

finite – amplitude small – scale Rossby waves. Owing to this essential nonlinear mechanism, spectral energy 

transfers from small – scale Rossby waves to large – scale enhanced zonal flows (inverse cascade) in the Earth’s 

neutral atmosphere. In addition, the zonal - flow generation was considered within a simple model of Rossby 

wave turbulence, using the classical nonlinear two – dimensional Charney equation. It was found that the 

necessary condition for zonal flow generation is similar to the Lighthill criterion for modulation instability in 

nonlinear optics [48]. By the numerical simulation of sheared zonal flow interaction with Rossby waves in the 

Earth’s neutral atmosphere [49] is shown that new solitary structures arise to produce the structural turbulence. 

       Further [50] revealed the new mechanism for the problem of zonal flow generation by the drift waves in 

magnetized plasmas adding a scalar nonlinearity of Korteweg – de Vries type to the generalized Hasegawa – 

Mima equation containing the vector nonlinearity also. It was shown that in this case zonal – flow generation 

always exists and needs no criterion fulfillment.                                                                                                                                

       Investigation of the mean zonal flow generation problem in the Earth’s electrically conducting ionosphere 

was firstly undertaken in [51 – 54], where the excitation of zonal flow by MR waves in the ionospheric E - layer 

was considered. 

       However, the investigation of another very important nonlinear process, viz., the generation of mean zonal 

flows and magnetic field by EM planetary waves in the ionospheric layers was started recently. Nonlinear 

dynamics of coupled Rossby – Khantadze and coupled internal – gravity and Alfvén EM planetary waves in the 

weakly ionized ionospheric E – layer was investigated by [55, 56]. It was shown that such EM planetary waves 

along with mean zonal flows can generate intense mean magnetic fields also. In the present paper, we will focus 

our attention on the Earth’s weakly ionized, conductive ionospheric gas of the E - layer (≈ 90 – 150 km  from 

the Earth’s surface) and will consider the generation of mean zonal flow and magnetic field by coupled Rossby – 

Alfvén – Khantadze (CRAK) EM planetary waves. Developed in [57, 58] techniques for the case of EM waves 

will be used. The paper is organized as follows: In Sec. 2, basic equations modeling the nonlinear propagation of 

EM CRAK  planetary waves in the ionospheric E - layer are obtained. Linear propagation properties of the EM 

coupled Rossby – Alfvén – Khantadze waves are given in detail in Sec. 3. Using the modified parametric 

approach, a set of coupled equations describing the nonlinear interaction of pumping EM CRAK planetary 

waves with an arbitrary spectrum and zonal flows is derived in Sec. 4. In the same section zonal flow dispersion 

relation is also obtained. In Secs. 5 and 6 it is shown that the system of equations obtained in Sec. 4 is unstable to 

a three wave parametric instability, whereby a coherent, monochromatic pumping Rossby – Alfvén – Khantadze 

waves can drive a band of modes and associated zonal flow and magnetic field generation. Namely, in Sec. 5 

zonal flow growth rate is analyzed in detail. In Sec. 6, magnetic field generation dynamics is investigated in 

detail. Our discussion and conclusions are presented in Sec. 7.  

2. Physical modeling for ionospheric E – layer   

       We consider the weakly ionized ionospheric E – layer plasma comprising of electrons, ions, and neutral 

(molecules) particles. Due to the condition n / N << 1, where n and N are the equilibrium number densities for 
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the charged particles and neutrals, respectively and strong collisional coupling between the ions and neutrals the 

dynamics of such ionospheric E – layer gas is largely determined by its massive neutral component. Attributable 

by the existence of charged particles Ampere force plays the significant role in the problem set along with the 

effects of the latitudinal inhomogeneity of the vertical component of the Earth’s angular rotation Ω  and of the 

geomagnetic field 
0( )B x  [55]. We also introduce the local Cartesian coordinates (x, y, z) system with the x - 

axis directed from the west to the east, y - axis directed from the south to the north and the z - axis along with the 

local vertical direction. The following relations for latitude   and longitude   
are valid: Ry )( 0 

 
and 

0cosx R  , where R is the distance from the Earth’s center. In the defined local coordinate system, the 

components of the geomagnetic field vector are )sin2,cos,0(),,0( 00  eqeqzy BBBB 0B , where eqB
 
is 

the equatorial value of the geomagnetic field at a distance R from the Earth’s center. As to the Earth’s angular 

velocityΩ , we have 
0 0 0 0(0, , ) (0, cos , sin ) [55].y z       Ω

 
      According to [33], we can construct the following single-fluid momentum equation which describes the 

dynamics of the electrically conducting weakly ionized ionospheric E – layer plasma   

                                  ,02
1

)( 






gvΩBjvv

v



p

t
                                                  (1) 

where v  is the incompressible  0 v
ne

utral gas velocity, NNm  is the gas mass density, p is the gas 

pressure of the neutral gas and g  is the gravitational acceleration. In Eq. (1) along with the Coriolis force the 

following Ampere force   

                                          ,
11

0

BBBjF 


A                                                                       (2) 

is taken into account, where 0  is the permeability of free space, and bBB 0   is the total magnetic 

induction. 

       From Eq. (1) follows the following equation for vorticity vζ  : 

              .0)()(2)()(
1

)()(
0





vΩΩvBBBBvv ζζ

ζ

t
    (3) 

       By using the plasma conditions in the ionospheric E – layer we may simplify the generalized Ohm’s law 

expression. First, the condition 1/ ici  ( ici meB / is the ion cyclotron frequency, and  i  is  the ion – 

neutral collision frequency) allows to consider unmagnetized ions. Due to the high values of  i we can  suppose 

vv i , which means that the ions are completely dragged by the ionospheric winds. As to electrons they are 

magnetized, 1/ ece   ( ce  is the electron cyclotron frequency and e  is the electron – neutral collision 

frequency). It means that electrons are frozen in the external magnetic field and they only experience drift 

perpendicular to the magnetic field, i.e ./ 2BEe BEvv   Under such conditions generalized Ohm’s law 

for the ionospheric E- layer is [55]     

                                                 
1

,A
en en


    E v B j B F                                                                      (4) 

where the right-hand side reflects Hall effect [39]. Then from the Faraday’s law 
t




B
E  we can find the 

following equation for the magnetic induction B [55] : 

                       .0)()()()(
1

0





BvvBBBBB

B

ent
                               (5) 

In contrast to the ordinary frozen in condition for a conducting fluid this equation contains the second term 

which is caused by the action of the Ampere force on the ionized plasma component (the Hall effect). 
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       Eqs. (3) and (5) constitute our initial general equations. In the ionospheric E – layer, the large-scale wave 

motions are basically two – dimensional, i.e. (v , v ,0)x yv  and by using the incompressibility condition 

0 v , we can introduce the stream function ( , , )x y z , so that v /x y   , and v /y x   . Further 

we will consider sufficiently high latitudes in the northern hemisphere, assuming that the geomagnetic field 

0 0 ( )z zB yB e  and the Earth’s angular velocity 0 ( )z zy Ω e . Let us suppose that the magnetic induction 

perturbation is also two – dimensional, i.e. ( , ,0)x yb bb  and according to the condition 0 B , we can 

introduce the magnetic function ( , , )A x y z , so that /xb A y   , and /yb A x   . Then from Eq. (3) we get 

                              0

0 0

1
( , ) ( , ).zB A

J J A A
t x z

 
  

 
 

 

  
      

  
                              (6) 

Here, 0/ 2 /zf y y       , 
2 2

x y     is the two – dimensional (2D) Laplacian and 

( , ) x y y xJ a b a b a b       is the the vector nonlinearity called Jacobian (Poisson bracket). Note that in Eq. 

(6) we neglected the term containing 0 /zB y  compared with the first term on the right – hand side. 

       To transform magnetic induction Eq. (5) we consider its x – and y  – components in terms of magnetic 

function A : 

                      

2 3 2 2

0
02

0

( , ) ( , ) 0,z
B z

A B A A A
c B J J A

t y en x z x y y z y y

 



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     

         
                        (7) 

                        

2 3 2 2

0
02 2

0

( , ) ( , ) 0,z
B z

A B A A A
c B J J A

t x en y z x x z x x

 



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     
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                        (8) 

where 0/B Bc en  , 0 /B zB y    . In Eqs. (7), and (8) we neglected the terms ~ 
2 4/A L  in comparison with 

3/A L , where L  is the scale-length for planetary waves. 

       Let’s integrate Eqs. (7), and (8) by y , and x , respectively. We get 

                  

3 2

0 0 12

0

1
( ) ( ) ( , ) ( , ),z B z

A A A
dyB y c dyB y J A F x z

t en x z x y z






   
    

                        (9) 

                        

3

0
0 22

0

( , ) ( , ).z
B z

A B A A
dx c B J A F y z

t en z y x z






   
    

                                       (10) 

Here, 1F  and 2F  are arbitrary functions of integration. Let us represent in Eqs. (9) and (10) 

0 0 0 0( ) ( ) /z z zB y B y y B y    , then we get 

                      

3 3

0 0
0 02 2

0

2

0
1

( )
( )

( , ) ( , ),

z
B B z

z

A B y A A A
dy c dyy c B y

t en x z x z x z

B
dyy J A F x z

y y z







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   
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 
  
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 



                                (11) 

                   

3

0
0 0 22

0

( ) ( , ) ( , ).z
B z

A B A A
dx c B y J A F y z

t en z y x z






   
    

                                     (12) 

For the consistency of Eqs. (11), and (12), we choose: 

                       

3 3 2

0 0 0
1 2 2

0

( )
( , ) ,z z

B

B y A A B
F x z dy c dyy dyy

en x z x z y y z





   
  
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3

0 0
2 2

0

( )
( , ) .zB y A

F y z dx
en z y


 

                                                                   (14) 

Then we get the following common equation 

                                        0 0( ) ( , ) 0.B z

A A
c B y J A

t x z



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   
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                                                      (15) 

       Equations (6) and (15) compose the initial system of equations for our problem and describe the nonlinear 

dynamics of the EM planetary low – frequency wave perturbations in the ionospheric E – layer. From Eqs. (6) 

and (15), we can obtain the following temporal conservation law of energy ε  

                                                 

2 2

0

1 1
[ ( ) ( ) ] 0.

2
A dxdy

t t

ε
 


 

  
     

   
                               (16) 

3. Linear EM planetary waves 

       Linear dispersion relation for EM CRAK waves can be readily obtained from Eqs. (6) and (15) 

                                                  
2 2

2
( )( ) v ,x

x B z A

k
k c k

k
  



                                                                (17) 

where   is the wave frequency, 
2 2

0 0v /A zB    is the squared Alfvén velocity, and 
2 2 2,x yk k k    xk , yk , and 

zk  are the components of the wave vector k  along the x -, y -, and z - axes. When 0xk   we get the Alfvén 

branch of oscillations with the dispersion relation vz Ak   ; when 0zk   we get the additional two branches 

of oscillations: 1) 
2/xk k    , which describes the Rossby waves (slow waves), and 2) x Bk c   , which 

describes the Khantadze waves (fast waves). Thus the dispersion relation (17) describes the propagation of EM 

CRAK waves in the ionospheric E – layer. 

       The solution of the dispersion equation (17) by taking into account the velocity 0Bc   

                                   

2
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2

1,2 2 2 2
4 v .

2

x z
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 


 
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 
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                                               (18) 

Eq. (18) represents that EM coupled Rossby – Alfvén – Khantadze waves have two branches of oscillations, one 

branch of oscillation 1 (with “+” sign before the radical) and other one 2  (with “–”  sign before the radical). 

       Eq. (18) for the case of small 
2 1k  reads as follows 
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and 
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
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
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       As to the case of large 
2 1k  , we get from Eq. (18) 
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
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Here we consider 
2 2 2 2v / ~ 1z A x Bk k c  to obtain Eqs. (19) – (21). 
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       Thus the branch 1  reprsents the Khantadze waves imposed by the action of both the latitudinal 

inhomogeneity of the Coriolis force and magnetic field perturbations, while the branch 2  represents the Rossby 

waves imposed by the same factors. Under the action of these factors Khantadze waves are propagating eastward 

with the increased phase velocity 1 / xk , while the phase velocity of westward propagating Rossby waves is 

also increasing. 

       The case of small 
2 1xk  , also can be described from Eq. (18) 

                                        

2

2

2

1,2 2 2 2
v 1 .

8 v 2

B

x
z A x B

z A

c
k k

k k c
k k




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

  
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                                    (22) 

These are Alfvén waves branch imposed by the action of latitudinal inhomogeneity of Coriolis force and 

latitudinal inhomogeneity of the geomagnetic field. 

       We can represent in  the  - plane approximation [33] the Coriolis parameter as 

                                                 0 0 02 2 sin ,zf f y                                                                (23) 

with 

                                                    0 02 cos
0 ,

f

y R




 
  


                                                                  (24) 

and the geomagnetic field as 

                                               0 02 sin ,z eq BB B y                                                                       (25) 

with 
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                                                                 (26) 

By introducing the dimensionless variables 
1/ 2 1/ 2/Bk k c   , and 

1/ 21/ 2/ Bc    , we can rewrite the 

dispersion relation (18) as  

                                       2 2 2 4

1,2 2

1
1 ( 1) 4 ,

2
y x x x

x
                                                             (27) 

where 
2 2/ ,xy k x k  

  , and 
2 2 2 2v /z A x Bk k c  . For the ionospheric E – layer parameters 

4~ 0.5 10 ,eqB T  
4 8 6

02 ~ 10 / , / ~ 10 10 ,rad s n N     
7 8 3(10 10 )kgm     , we can find that 

~ (1 10) /Bc km s , v ~ (0.1 1) /A km s . In Fig. 1, the dependence of dimensionless phase velocity y  of 

coupled Rossby – Alfvén – Khantadze branches of oscillations on wave number x  for the different values of 

0  ; 1 ; 5 is shown. A  and B  curves correspond to “+” and “–” signs before the radical in Eq. (27), 

respectively. Thus A  and B  curves correspond to 1  and 2  branches of oscillations in Eqs. (19) – (21), 

respectively. 

       We can find the following behavior of 1,2y : 

a) when 0x , 

                  
2

1 1y x   ,             and          
2

2 2

1
y x

x
   .                                                            (28) 

b) when x  
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                                              (29) 

In Eqs. (28) and (29) 1y  and 2y  correspond to Khantadze and Alfvén waves, respectively. 

 

 4. Nonlinear interaction of coupled Rossby – Alfvén – Khantadze EM planetary waves and zonal flow 

dispersion relation 

 

       To find the possibility for the  zonal flow generation by the EM CRAK planetary waves in the ionospheric E 

– layer we will consider the initial nonlinear Eqs. (6) and (15). Existing in this equations  the nonlinear Jacobian 

terms allows to consider a standard four - wave nonlinear interaction, in which the coupling between the pump 

)
~

,~(
~

hX  EM planetary waves and two side - band )ˆ,ˆ(ˆ hX  modes drives low - frequency large - scale 

),( hX 
 
zonal flows with variation only along the y – axis. Accordingly, the total perturbed quantities 

),( hX  are decomposed in three components, 

                                                     ,ˆ~
XXXX                                                                                  (30) 

where 

                         ,)exp()(
~

)exp()(
~~

tiiXtiiXX kk

k

rkkrkk                                    (31) 

describes pump EM planetary modes spectrum ( )(
~

)(
~

kk 

  XX , where   means the complex conjugate), 

                          ˆ ˆ ˆ( )exp( ) ( )exp( ) . .X X i i t X i i t c c 
    

         k

k

k k r k k rk
                  (32) 

describes sideband modes spectrum, and                

                              ..)exp(0 ccyiqtiXX y                                                                                (33) 

describes the zonal - flow modes varying only along meridians. Within the local approximation the amplitude of 

the zonal flow mode ),( 000 hX 
 

is assumed constant. The energy and momentum conservations 

k    and kek y  yq  are fulfilled, and the pairs ),( kk  and ),( yyq eΩ
 
represent the frequency 

and wave vector of the EM planetary pump and zonal - flow modes, respectively. In the sequel we will omit the 

index k at  for simplicity.       

       Substituting Eqs. (30) - (33) into (6) and (15), and according to the standard quasilinear procedure ignoring 

the small nonlinear term in the relations for the high frequency but not for the low frequency zonal flow modes 

we get for the EM planetary modes 

 

2 20
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z
x z

B x z z

B
k k k k A

c k A B k

  

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
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                                                                                                           (34) 

From this homogeneous system the dispersion relation (17) for EM planetary modes follows. 

       Substituting Eqs. (30) – (33) into (6) and (15) to obtain the relations for the amplitude of the zonal flow 

modes and averaging out over the fast small – scale fluctuations, we get [57, 58]
 

                                                          0 ,i R                                                                                     (35) 

and  

                                                          
0 || ,i A R                                                                                     (36) 

where R  and ||R  are the mixture of Reynolds and electromotive forces, defined by 
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                                                                      (38) 

where  represents the average over fast oscillations. Using the Fourier series (31) and (32), we can write 

these quantities as 

                                                         ( ),xR k r  
k

k                                                                           (39) 

and 

                                                         || ||( ),y xR q k r 
k

k                                                                           (40) 

where  
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                               (41) 

and 

                                      
||

ˆ ˆˆ ˆ ˆ ˆ( ) .r A A A A                       k                                      (42) 

Here we used Eq. (34) for A  to construct the following auxiliary side – band amplitudes 

                                                        0ˆ ˆˆ .z z

x B
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
                                                                   (43) 

To calculate the functions r  and ||r , we need to define the side – band amplitudes ̂   and Â
. According to 

Eqs. (6) and (15), these amplitudes satisfy the following system [57, 58]
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We can find the following solutions of the system (44) 
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where  

                                           
2 2 2 2( )( ) v .x x B z AD k k k c k k                                                       (47) 

Applying Eqs. (45) and (46), the expression (43) for the auxiliary side – band amplitudes takes the following 

form 
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             (48) 

We assume that / ~ / 1yq k    , which is valid in the existing theory of zonal – flow generation [45]. 

Then, from Eq. (48) follows the distinguished fact that the main contributions of the “magnetic” and “stream 

function” side – band amplitudes to the evolution equation of the mean magnetic field mutually cancel each 

other [see Eqs. (36), (38), (40), and (42)]. If we use the superscripts “(1), (2), …” to show the order of 

magnitudes with respect to yq  and  , then Eq. (47) can be written as follows 
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If we keep in Eq. (48) only first two terms over the named above small parameters yq  and   we get 
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We can prove that the contribution of 
)1(ˆ

  in Eq. (42) is zero. Thus, we get 
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Consequently, we can transform Eq. (54) to 
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In Eq. (56) we introduced the intensity of pumping waves 

                                                               .~~2  kI                                                                             (59) 

       Analogously we can transform Eq. (41). To this end, we represent the solution (45) as the expansion 
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Similarly for Eq. (46) we have the expansion 
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Accordingly, for Eq. (41) we get 
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Using Eqs. (39), (40), (56), and (66), we can reduce Eqs. (35) and (36) to the following form: 
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where 
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In Eqs. (70) – (73) 
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where gV  is the zonal – flow group velocity given by                                  
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       From the system of Eqs. (69), we get the following zonal – flow dispersion relation: 

                                              .0)(1 ||||||  

 IIIIII AAA
                                                           (76) 

Further we will show that in the most interesting case this biquadratic with respect to gyVq zonal flow 

dispersion relation can be reduced to a quadratic one. 

       Let us consider the monochromatic wave packet case of the primary modes, which means a single wave 

vector on the right – hand sides of Eqs. (70) – (73). Because the values 


||I  and 
AI ||  are of the order of )( 2

yqO , 
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while 

I  and 

AI   are of )1(O , we conclude that the right – hand sides of these equations will  match only if the 

value gyVq  is also a small parameter. Therefore the zonal – flow dispersion relation (76) reduces to 

                                                              ,1 
 I                                                                                         (77) 

or,  

                                                   ,)( 22  gyVq                                                                             (78) 

where 
2  means the squared zonal – flow growth rate defined by 
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5. Generation of zonal flow 

       The most suitable case to analyze the zonal flow growth rate is 0yk . Therefore for this case the zonal 

flow growth rate (79) takes the form  
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By using the solution (18), Eq. (80) becomes 

                                  

2 2 2

2

2 2 2 4 2

2 ( )
,

( ) 4

y x x B

x B x B x B

q I k k c

k c k c k c



  


 

  

k
                                                   (81)          

Here, 
2 2 2 2v /z A x Bk k c  , the upper (minus) sign before the radical belongs to Khantadze branch 1 , and the 

lower one to Rossby branch 2 . 

       It is seen from Eq. (81) that Khantadze waves give no contribution (
2 0  ) to the generation of zonal flow, 

but the maximum growth rate is achieved by Rossby waves having the dispersion xk/   at 0  . In this 

case 
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This value coincides with the maximum value of growth rate achieved in the problem [54, 55]. 

        If we introduce the dimensionless variables x  and y  used for Eq. (27), we rewrite Eq. (81) as follows 
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  where the normalization constant 
2 /y BK q I c k

. In Fig. 2, the dependence of the function   on wave 

number x  for the different values of   is shown. A and B curves correspond to “–” and “+” signs before the 

radical in Eq. (83), respectively. 

6. Magnetic field generation 
       From Eq. (69) it follows that 
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or taking into account that )(~ 2
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Thus the value of the generated mean magnetic field is the order of 
2

yq  in comparison with the mean zonal flow 

value. Using Eqs. (78) and (79) we get at  gyVq  (use also Eq. (75) for gV ): 
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Thus, when 00 zzx Bkk
 
mean magnetic field is also generated along with the mean zonal flow generation. 

       As in the case of Eq. (80) we consider 0yk  , then from Eq. (86) we get 
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Substituting the solution (18), we get                          
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For the evaluation order we get 
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       In the dimensionless variables x  and y  used for Eq. (27), we get from Eq. (92) 
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In Fig. 3 the dependence of the function 0

2

0 0

vA

y z B

A

q B c





  on wave number x  for the values    = 1; 5 is 

shown. A and B curves correspond to “+” and “–” signs in Eq. (94).  

 

 

7. Discussions and conclusions 

       In this paper, the nonlinear generation of large – scale, and low – frequency zonal flows and magnetic fields 

by relatively small – scale ULF EM coupled Rossby – Alfvén – Khantadze (CRAK) planetary waves is 

investigated in the Earth’s ionospheric E – layer. The importance of latitudinal non-homogeneity of both  

Coriolis parameter and the geomagnetic field along with the prevalent effect of Hall conductivity for CRAK is 

shown. In addition, accounting of the vertically directed propagation of the perturbations under the consideration 

leads to the z-dependence and the problem becomes essentially three-dimensional. As a result, owing to the 

existence of magnetic field perturbations, Alfvén waves also became incorporated in the dynamics of problem. 

Action of these effects leads to the coupled propagation of EM Rossby – Alfvén – Khantadze modes, which are 

described by the system of nonlinear Eqs. (6) and (15). Due to such coupling dispersion of both Alfvén and 

Khantadze waves appeared. Note that the long-lived (compared to linear wave packets) nonlinear structures can 

be formed under the condition when the waves dispersion is compensated by their nonlinearity. 

       The dispersion relation for the linear EM CRAK is obtained [see Eq. (17)] and analyzed in detail in Sec. 3. 

The mode is composed by two branches 1  and 2 . For small values of perpendicular wave number k  the 

frequencies 1  and 2  can be described analytically by Eqs. (19) and (20) while for large values of k by Eq. 

(21). Analytical expression for the corresponding new type of Alfvén waves is given by Eq. (22). All branches of 

oscillations are mutually influenced. Depending on the perpendicular wave number the appropriate behavior of 

phase velocities 1,2 / xk  for the different values of parameter 
2 2 2 2v /z A x Bk k c   is given in Fig. 1 (Curves A 

belong to 1  and B ones to 2 ). It is clarified that in case of small  k  the phase velocity of the branch 1  

tends to the finite value 
1 / x Bk c   and corresponds to Khantadze waves, while for the branch 2  it tends to 

the  , which corresponds to Rossby waves. For the large values of k  the phase velocity of the branch 1  

tends to the finite value 1

1
/ (1 1 4 )

2
x Bk c     which is more then 

Bc . Thus the existence of Alfvén 

waves causes the increase of the phase velocity of Khantadze waves as compared with the case 0  . As to the 

case of Rossby waves for the large values of the perpendicular wave number k  the phase velocity of the branch 

2  tends to the finite value 2

1
/ (1 1 4 ) 0

2
x Bk c     . Thus in this case Alfvén waves cause the increase 

of the phase velocity of Rossby waves as compared with the case 0  . Note that in case of 0xk   the branch 

of Khantadze waves ( 1 ) propagates along the latitude circles eastward, while the branch of Rossby waves 

( 2 ) along the latitude circles westward against a background of mean zonal wind. 

1     5   0  
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Fig. 1. Dependence of phase velocity of coupled Rossby – Alfvén – Khantadze modes on wave number x at 

different values of  . 

     Dealing with zonal flows and magnetic fields generation problem by EM CRAK modes  in the weakly 

ionized ionospheric E-layer gas we have used the modified parametric approach [58] and the spectrum of 

primary modes is assumed to be arbitrary [see Eq. (31)]. Then, instead of the side-band amplitude for a single 

wave vector k , we have dealt with a spectrum of such amplitudes [see Eq. (32)] and as a consequence the 

appropriate driving forces are presented as summation (or integration) over the spectrum of the primary modes 

[see Eq. (39) and (40)]. The developed method can be effectively used for different types of primary modes 

having arbitrary spectrum broadening. To describe the nonlinear dynamics of the zonal flows and magnetic 

fields generation by EM CRAK waves the appropriate system of coupled equations is obtained [see Eqs. (35) 

and (36)]. We have shown that these equations are unstable to four wave parametric instability and the coherent, 

monochromatic CRAK waves can drive a band of modes and corresponding zonal flow and magnetic field 

unstable. Thus, we have investigated the interaction of a pump CRAK modes, two their satellites (side-band 

waves) and a sheared zonal flow. For the monochromatic wave packet the instability [see Eq. (78)] is of the 

hydrodynamic type. The nonlinear instability mechanism is driven by the vorticity advection leading to the 

inverse energy cascade toward the longer wavelength. Consequently, short wavelength turbulence of CRAK 

waves is unstable causing  the excitation of low-frequency and large-scale perturbations of the zonal flow and 

magnetic field. It is shown that in the system of Eqs. (35) and (36) controlling the evolution of zonal flow and 

magnetic field the driving mechanism of the instability is associated with the mixture of mean Reynolds and 

Maxwell stresses R [see Eq. (37)] and mean electromotive force ||R [see Eq. (38)], respectively. 

0                                                                1                                              5  

                

                      
Fig. 2. Dependence of the function  on wave number x at different values of  .

                                  
 

 
                

     We studied the propagation of zonal flow along the geographical parallels when the corresponding mean flow 

velocity depends only on the meridional y-coordinates. From our investigations it is seen that the maximum 

growth rate of the zonal flow generation is achieved at 0yk  , when the group velocity 0gV  [see Eq. (75)] 

and therefore the real part of oscillations for zonal flow becomes zero. In this case the excitation of zonal flow is 

stipulated only by Rossby waves and the corresponding growth rate is (see Eq. (82)) 

                                                              
3

y x Rq k r    ,                                                                        (95) 

which is equal to the maximum growth rate achieved in the problems [Kaladze et al. 2009, 2012]. In Eq. (95) the 

stream function    of pump modes is normalized by Rv Rr , where 
2

Rv Rr is the Rossby velocity and 

/R sr c f ( sc is the equivalent sound speed in the ionospheric E-layer) is the Rossby radius, respectively. Here 

for this regime, we have 
6 11 1 1~ 0.1, ~10, 10 , 10y R x R Rq r k r r m m s     , and 

2~ 10 

 . Then, the 

numerical value for the zonal flow growth rate becomes 
7 110 s   . This estimation  is consistent with existing 

observations, and conducted investigations provide the essential nonlinear mechanism for the driving spectral 

energy from short-scale CRAK waves to large-scale reinforced zonal flows in the Earth’s ionosphere. 
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     In Fig.2 the dependence of the squared dimensionless growth rate  on the wave number x (see Eq. (83)) for 

the different values of  is shown (curves A belong to the branch 1 and B ones to 2 ). It is seen that 

Khantadze waves ( 1 ) don’t contribute in the generation of zonal flow, for them 0  . The maximum growth 

rate is achieved for the Rossby waves branch 2 at 0  . This is the case when Alfvén waves also don’t 

contribute in the growth rate. Thus the generation of zonal flow is mainly stipulated by Rossby waves. With 

increase of  the growth rate is decreasing in accordance with Eq. (83). 

     Here, the mean magnetic field excitation has the special attention and its dynamics is described with detail in 

Sec. 6. Generated magnetic field is of the order 
2

yq  with respect to the excited mean zonal flow and is caused 

only by the existence of Alfvén waves. Excited mean magnetic field has the prevalent component yb (as in the 

calculations we gave the priority to 0yk  consideration) and as the zonal flow is sheared in the meridional y-

direction. It is found that the ratio of the mean magnetic function 0A to mean zonal flow 0 strongly depends on 

the pumping wave branches of   (see Eq. (91)). After the substitution of   from Eq. (18), we get Eq. (92), 

which shows that both Rossby ( 2 ) and Khantadze ( 1 ) branches give symmetric by sign contributions in the 

generation of the magnetic field component yb . The following estimation for the generated magnetic field (see 

Eq. (93)) is valid 

                                                        

2

0

0

Av

y B

y

R

q B c
b

r



 ,                                                                      (96) 

where the Rossby radius Rr is chosen as the characteristic scale-length. Numerically, to approximate this value, 

we consider ~ (1 10) /Bc km s , v ~ (0.1 1) /A km s , 
4

0 ~ 0.5 10 ,B T  
11 1 110 m s    , and consider 

0 Rvr  (where v = (1-100)m/s ) is the local ionospheric mean wind’s velocity). Then, the values for the 

excited mean magnetic field becomes 
2 3(10 10 )yb nT  . Consequently, the intensification of the 

geomagnetic field perturbed pulses takes place. 

1                                                                               5  

            

Fig. 3. Dependence of the function  on wave number x at different values of  . 

 

     In Fig.3 the dependence of the dimensionless ratio (see Eq. (94)) on wave number x for the values 1;5  is 

shown. The curve A belongs to Khantadze waves contribution, while the curve B to Rossby waves contribution. 

     Note that for the large latitude in the northern hemisphere our consideration has been limited to the nearly 

constant dipole geomagnetic field. 
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     Placed on the solid ground magnetometer chains register large-scale variations of exposed origin in B . 

However, the incoming values are much lower than those in the E-layer since B falls off exponentially below 

the conductive slab (e.g., [59]), i.e. exp( 2 / )B d    , where 150d km is the characteristic scale at the E-

layer heights. For the discussing planetary wavelengths 
310 km   and the estimated damping rate is of order 

unity. We would like to note that studied in the given paper theoretically ULF electromagnetic modes in the E-

layer are not adequately studied experimentally and further experimental  studies are  required.  

     Thus, in this paper the conducted investigation shows that parametric instability becomes a sufficient 

nonlinear mechanism to drive large-scale zonal flows and intense mean magnetic field in the weakly ionized 

ionosphere E-layer. 

       Acknowledgments. The authors are grateful for the partial financial support from the International Space 

Science Institute (Bern, Switzerland) through the grant Large – scale vortices and zonal winds in planetary 

atmospheres/ionospheres: Theory vs. observations. 

     It would be worth to mention the JGGS vice-ed.’s attention to the work.   

 

References 
[1]  Pedlosky J. 1987 Geophysical Fluid Dynamics Springer 

[2]  Satoh M. 2004 Atmospheric Circulation Dynamics and General Circulation Models Springer 

[3] Cavalieri D.J., Deland R.J., Poterna J.A. and Gavin R.F. 1974 The correlation of VLF         propagation 

variations with atmospheric planetary-scale waves J. Atmos. Terr.  Phys. 36 561- 574 

[4] Cavalieri D.J. 1976 Traveling planetary-scale waves in the E-region J. Atmos. Terr.              Phys. 

38 965-974 
[5] Manson A.H., Heek C.E. and Gregory J.B. 1981 Winds and waves (10 min-30 day) in the        mesosphere 

and lower thermosphere at Saskatoon (52 
○
N, 107 

○
W, L = 4.3) during the year,        October 1979 to July 

1980 J. Geophys. Res. 86 9615-9625 

[6]  Hirooka, T. and Hirota I. 1985 Normal Mode Rossby Waves Observed in the Upper         Stratosphere. Part 

II: Second Antisymmetric and Symmetric Modes of Zonal Wavenumbers 1         and 2 J. Atmos. Sc. 42 536-

548 

[7]  Randel W. J. 1987 A study of planetary waves in the southern winter troposphere and               stratosphere. 

Part I: Wave structure and vertical propagation J. Atmos. Sc. 44 917-935 

[8]  Sorokin V.M. 1988 Wavy processes in the ionosphere related to the geomagnetic field Izv.  

       Vuz. Radiofis. 31 1167-1179 

[9]  Sharadze Z.S., Japaridze G.A., Kikvilashvili G.B. et al. 1988 Wavy disturbances of non-       acoustical 

nature in the middle-latitude  ionosphere Geomag. Aeron. 28 446-451 

[10]  Sharadze Z.S., Mosiashvili N.V., Pushkova G.N. and Yudovich L.A. 1989 Long-period- wave disturbances 

in E-region of the ionosphere Geomag. Aeron. 29 1032-1035 

[11]  Williams C.R. and Avery S.K. 1992 Analysis of long-period waves using the mesosphere-          

stratosphere-troposphere radar at Poker Flat Alaska J. Geophys. Res. 97 20855-20861 

[12]  Forbes J.M. and Leveroni S. 1992 Quasi 16-day oscillation in the ionosphere Geophys. Res.          Lett. 19 

981-984 

[13]  Bauer T.M., Baumjohann W., Treumann R.A. et al. 1995 Low-frequency waves in the                

near-earth plasma sheet J. Geophys. Res. 100A 9605-9617 
 

[14]  Zhou Q.H., Sulzer M.P. and Tepley C.A. 1997 An analysis of tidal and planetary waves in           the neutral 

winds and temperature observed at low-latitude E-region heights J. Geophys. Res. 102 11491-11505 

[15]  Lastovicka, J. 1997 Observations of tides and planetary waves in the atmosphere-ionosphere           system 

Adv. Space Res. 20 1209-1222 

[16]  Smith A.K. 1997 Stationary Planetary Waves in Upper Mesospheric Winds J. Atmos. Sci., 54          2129-

2145 

[17]  Lawrence A.R. and Jarvis M.J. 2003 Simultaneous observations of planetary waves from 30  to           220 

km J. Atmos. Solar – Terr. Phys. 65 765-777 



 

 

72 

[18]  Burmaka V P., Lysenko V.N., Chernogor L.F. and Chernyak Yu.V. 2006 Wave-like  processes in 

the ionospheric F region that accompanied rocket launches from the   Baikonur Site Geomagn. 

Aeron. 46 742-759 
[19]  Alperovich L.S. and Fedorov E.N. 2007 Hydromagnetic Waves in the Magnetosphere and the          

Ionosphere Springer 

[20]  Fagundes P.R., Pillat V.G., Bolzan M.J. et al. 2005 Observations of F layer electron density           profiles 

modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region J. Geophys. Res. 

110 A12302 

[21]  Haykowicz L. A. 1991 Global onset and propagation of large-scale traveling ionospheric          disturbances 

as a result of the great storm of 13 March 1989 Planet. Space Sci. 39 583-593 

[22]  Liperovsky V.A., Pokhotelov O.A. and Shalimov S.L. 1992 Ionospheric Earthquake Precursos            

Nauka Moscow 

[23]  Cheng K.Y. and Huang N. 1992 Ionospheric disturbances observed during the period of Mount           

Pinatubo eruptions in June 1991 J. Geophys. Res. 97 16995-17004 

[24]  Pokhotelov O.A., Parrot M., Fedorov E.N., Pilipenko V.A., Surkov V.V. and Gladychev V.A.          1995 

Response of the ionosphere to natural and man-made acoustic sources, Ann. Geophys. 13          1197-1210 

[25]  Shaefer L.D., Rock D.R., Lewis J.P. et al. 1999 Lawrence Livermore Laboratory Livermore CA           

94550 

[26]  Burmaka V.P., Chernogor L.F. 2004 Clustered-instrument studies of ionospheric wave               

disturbances accompanying rocket launches against the background of nonstationary                

natural processes Geomagn. Aeron. 44(3) 518-534 

[27]  Burmaka V.P., Taran L.F., Chernogor L.F. 2005 Results of investigations of the wave   

disturbances in the ionosphere by noncoherent scattering Adv. Mod. Radiophys. 3 4-35 
[28]  Dokuchaev V.P. 1959 Influence of the earth's magnetic field on the ionospheric winds, Izvestia          AN 

SSSR Seria Geophysica 5 783-787 

[29]  Tolstoy I. 1967 Hydromagnetic gradient waves in the ionosphere J. Geophys. Res. 72 1435-1442 

[30]  Kaladze T.D. and Tsamalashvili L.V. 1997 Solitary dipole vortices in the Earth’s Ionosphere,           Phys. 

Lett. A 232 269-274 

[31]  Kaladze T.D. 1998 Nonlinear vortical structures in the Earth’s ionosphere Phys. Scripta T75          153-155. 

[32]  Kaladze T.D. 1999 Magnetized Rossby waves in the Earth’s ionosphere, Plasma Phys. Reports           25 

284-287 

[33]  Kaladze T.D., Aburjania G.D., Kharshiladze O.A., Horton W., and Kim Y. – H. 2004. Theory of           

magnetized Rossby waves in the ionospheric E layer J. Geophys. Res. 109 A05302 doi:           

10.1029/2003JA010049 

[34]  Kaladze T.D. and Horton W. 2006 Synoptic-scale nonlinear stationary magnetized Rossby           waves in 

the ionospheric E-layer Plasma Phys. Reports 32 996-1006 

[35]  Khantadze A.G. 1986 Hydromagnetic gradient waves in dynamo region of the ionosphere            Bull. 

Acad. Sci. Georgian SSR 123 69-71 

 

[36]  Khantadze A.G. 1999 On the electromagnetic planetary waves in the Earth’s ionosphere J.          Georgian 

Geophys. Soc. 4B 125-127 

[37]  Khantadze A.G. 2001. A new type of natural oscillations in conducting atmosphere Dokl.          Akad. 

Nauk, 376 250-252 

[38]  Sharadze Z.S. 1991 Phenomena in the Middle – Latitude Ionosphere PhD Thesis Moscow.  

[39]  Kaladze T.D., Pokhotelov O.A., Sagdeev R Z., Stenflo L., and Shukla, P.K. 2003 Planetary           

electromagnetic waves in the ionospheric E-layer J. Atmos. Solar – Terr. Phys. 65 757-764 

[40]  Kaladze T.D. 2004 Planetary electromagnetic waves in the ionospheric E-layer, Proceedings          of the 

First Cairo Conference on Plasma Physics & Applications: CCPPA 2003 (Cairo, Egypt,           October 11 – 

15, 2003). Shriften des Forschungszentrums Jülich, Bilateral seminars of the          International Bureau 34 

68-74 (Eds. H. - J. Kunze, T. El – Khalafawy, H. Hegazy, German –          Egyptian Cooperation) 



 

 

73 

[41]  Khantadze A.G., Jandieri G.V., Ishimaru A., Kaladze T.D. and Diasamidze Zh.M. 2010           

Electromagnetic oscillations of the Earth’s upper atmosphere (review) Ann. Geophys. 28 1387- 1399 

[42]  Kaladze T.D. and Tsamalashvili L.V. 2001 Nonlinear Alfven-Rossby vortical structures in the          Earth’s 

ionosphere Phys. Lett. A 287, 137-142 

[43]  Petviashvili V.I. and Pokhotelov O.A. 1992 Solitary Waves in Plasmas and in the Atmosphere          

Reading, PA: Gordon and Breach Science Publishers 

[44]  Pokhotelov O.A., Stenflo L. and Shukla P.K. 1996 Nonlinear structures in the Earth’s           magnetosphere 

and atmosphere Plasma Phys. Reports 22 852-863  

[45]  Smolyakov A.I., Diamond P.H. and Shevchenko V.I. 2000 Zonal flow generation by parametric           

instability in magnetized plasmas and geostrophic fluids Phys. Plasmas 7 1349-1351 

[46]  Shukla P.K. and Stenflo L. 2003 Generation of zonal flows by Rossby waves Phys. Lett. A 307           154-

157 

[47]  Onishchenko O.G., Pokhotelov O.A., Sagdeev R.Z., Shukla P.K. and Stenflo L. 2004           Generation of 

zonal flows by Rossby waves in the atmosphere Nonlin. Proc. Geophys. 11 241- 244 

[48]  Lighthill M. J. 1965 Group velocity J. Inst. Math. Appl. 1 1-28 

[49]  Kaladze T.D., Pokhotelov O.A., Stenflo L., Rogava J., Tsamalashvili L.V. and Tsiklauri M.           2008 

Zonal flow interaction with Rossby waves in the Earth's atmosphere: A numerical   simulation, Phys. Lett. 

A, 372, 5177-5180 

[50]  Kaladze T.D., Wu D.J., Pokhotelov O.A., Sagdeev R.Z., Stenflo L., and Shukla P. K. 2005 Drift          wave 

driven zonal flows in plasma Phys. Plasmas 12 122311(1-6)  

[51]  Kaladze T.D., Wu D.J., Pokhotelov O.A., Sagdeev R. Z., Stenflo L. and Shukla P. K.               

2007  Zonal flow generation by magnetized Rossby waves in the ionospheric E-layer, // 

Mathematical Physics, Proceedings of the 12
th

 Regional Conference, slamabad Pakistan 27 March-

1 April 2006 p. 237-251 Eds. M. Jamil Aslam, Faheem Hussain, Asghar Qadir, Riazuddin, Hamid 

Saleem, World Scientific Publishing 
[52]  Kaladze T.D., Wu D.J., Pokhotelov O.A., Sagdeev R.Z., Stenflo L., and Shukla P. K. 2007                  

Rossby-wave driven zonal flows in the ionospheric E-layer J. Plasma Phys. 73 131-140 

[53]  Kaladze T.D., Wu D.J., Tsamalashvili L.V. and Jandieri G.V. 2007 Localized magnetized                  

Rossby structures under zonal shear flow in the ionospheric E-layer Phys. Lett. A 365 140-143 

[54]  Kaladze T.D., Shah H.A., Murtaza G., Tsamalashvili L.V., Shad M., and Jandieri G. V.                

2009 Influence of non-monochromaticity on zonal-flow generation by magnetized                Rossby 

waves in the ionospheric E-layer J. Plasma Phys. 75 345-357 
[55]  Kaladze T.D., Kahlon L.Z. and Tsamalashvili L.V. 2012 Excitation of zonal flow and magnetic                 

field by Rossby–Khantadze electromagnetic planetary waves in the ionospheric E-layer Phys.                 

Plasmas 19 022902 (1-12) 

 

 [56]  Kaladze, T.D., Kahlon L.Z., Tsamalashvili L.V. and Kaladze D.T. 2012 Generation of                

zonal flow and magnetic field by coupled internal-gravity and alfvén waves in the                 

ionospheric E-layer J. Atmos. Solar – Terr. Phys. 89 110-119  

[57]  Mikhailovskii A.B., Smolyakov A.I., Kovalishen E.A., Shirokov M.S., Tsypin V. S.,                

Botov P.V. and Galvão R.M.O. 2006 Zonal flows generated by small-scale drift-Alfven modes 

Phys. Plasmas 13 042507 
[58]  Kaladze T.D., Wu D.J. and Yang L. 2007 Small-scale drift-Alfven wave driven zonal flows in                 

plasmas Phys. Plasmas 14 032305      

[59]  Pokhotelov O.A., Khruschev V., Parrot M., Senchenkov S. and Pavlenko V.P. 2001               

Ionospheric Alfven resonator revisited: feedback instability J. Geophys. Res. 106,               25813-

25824, doi: 10.1029/2000JA000450 

 

(Received in final form 20 December 2013) 



 

 

74 

 

 

 

 

 

Генерирование зонального течения и магнитного поля сцеплёнными 

волнами Россби-Альфвена-Хантадзе в Е-слое ионосферы Земли 
 

Т. Д. Каладзе, В. Хортон, Л. З. Кахлон, О. Похотелов, О. Онищенко 

 

Резюме 

 

      Показано, что в слабоионизированном Е-слое ионосферы Земли, где преобладает холловская 

проводимость плазмы, может существовать новый тип сцеплѐнных электромагнитных (ЭМ) 

планетарных волн Россби-Альфвена-Хантадзе (СРАХ), обусловленных широтной 

неоднородностью кориолисова параметра Земли и геомагнитного поля. Под воздействием 

такого сцепления возбуждается новый тип диспергирующих волн Альфвена. Исследуется 

генерирование сдвигового зонального течения и магнитного поля под действием СРАХ ЭМ 

планетарных волн. Нелинейный механизм неустойчивости основывается на параметрическом 

возбуждении зонального течения посредством взаимодействия четырѐх волн, ведущих к 

инверсионному каскаду энергии в сторону более длинных волн. Выведена система 3D 

сцеплѐнных уравнений, описывающих нелинейное взаимодействие накачивающих СРАХ волн и 

зонального течения. Определены скорость роста соответствующей неустойчивости и 

условиядля их управления. Обнаружено, что рост скорости главным образом обусловлен 

волнами Россби, а генерация магнитного поля средней интенсивности вызывается волнами 

Альфвена. 

 

 

 

 

 

 

 

 

დედამიწის E–ფენაში ზონალური დინების და მაგნიტური ველის გენერირება 

როსბი–ალფვენ–ხანთაძის გადაბმული 

ტალღების მეშვეობით 
 

თ. კალაძე, ვ. ხორტონი, ლ. ზ. კაჰლონი, ო. პოხოტელოვი, ო. ონიშჩენკო 

 

რეზიუმე 

 

ნაჩვენებია, რომ დედამიწის იონოსწფეროს სუსტად იონიზირებულ Е–ფენაში, სადაც 

ბატონობს ქოლის გამტარობა, გენერირდება ახალი ტიპის როსბი–ალფვენ–ხანთაძის (გრახ) 
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გადაბმული პლანეტარული ელექტრომაგნიტური ტალღები განპირობებული დედამიწის 

კორიოლისის პარამეტრის და გეომაგნიტური ველის განედური არაერთგვაროვნებების 

არსებობით. ტალღების ამგვარი გადაბმულობის გამო აღიძვრება ახალი ტიპის ალფვენის 

ტალღები. შეისწავლებაზონალური დინების წანაცვლების და (გრახ ემ) პლანეტარული 

ტალღების წარმოშობა. არამდგრადობის არაწრფივი მექანიზმი ეყრდნობა ზონალური 

ნაკადის პარამეტრულ აღძვრას ოთხი ტალღის ურთიერთქმედებით, რომელსაც მივყავართ 

ენერგიის ინვერსიულ კასკადისკენ უფრო გრძელი ტალღების მიმართულებით. 

გამოყვანილია 3D გადაბმულ განტოლებათა სისტემა, რომელიც აღწერს მქაჩავი (გრახ) 

ტალღების არაწრფივ ურთიერთობას ზონალურ დინებასთან. განსაზღვრულია სათანადო 

არამდგრადობის ზრდის სიჩქარე და მისი მართვის პირობები. მიღებულია, რომ სიჩქარის 

ზრდა ძირითადად განისაზღვრება როსბის ტალღების მოქმედებით, ხოლო მაგნიტური 

ველის წარმოშობა – ალფვენის ტალღების მოქმედებით. 
 

 

 

 
 

 

 

 

 

 

 

                                                         
 

 

 

 

 
 

 

 


