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Abstract

It is shown that in the Earth’s weakly ionized ionospheric E-layer with the dominant Hall conductivity new
type of coupled Rossby — Alfvén — Khantadze (CRAK) electromagnetic (EM) planetary waves attributable by
latitudinal inhomogeneity of both the Earth’s Coriolis parameter and the geomagnetic field can exist. Under
such coupling new type of dispersive Alfvén waves is revealed. Generation of sheared zonal flow and magnetic
field by CRAK EM planetary waves is investigated. The nonlinear mechanism of the instability is based on the
parametric excitation of zonal flow by interacting four waves leading to the inverse energy cascade in the
direction of longer wavelength. A 3D set of coupled equations describing the nonlinear interaction of pumping
CRAK waves and zonal flow is derived. The growth rate of the corresponding instability and the conditions for
driving them are determined. It is found that growth rate is mainly stipulated by Rossby waves but the
generation of the intense mean magnetic field is caused by 4/fvén waves.

PACS numbers: 52.35.Mu, 92.10.hf, 94.20.wc
Keywords: Zonal flow, lonospheric E-layer, Rossby — Alfvén — Khantadze waves, Nonlinear instability.

1. Introduction

Large-scale wave motions have the significant influence on energy balance in the Earth’s atmospheric
circulation [1, 2]. However, the presence of charged particles in the electrically conductive weakly ionized
ionosphere substantially enriches the conditions for propagation of different nature low-frequency wave modes.
Numerous ground-based and satellite observations [3 — 20] show that planetary-scale (with wavelengths

A 210°km ang several days period) wave perturbations of electromagnetic (EM) origin regularly exist in
different ionospheric layers. Increasing interest to the planetary-scale ultra-low-frequency (ULF) wave

perturbations is caused by the fact that many ionospheric phenomena from the same frequency range can play
the role of ionospheric precursors of some extraordinary phenomena

Corresponding author, *< E-mail address: tamaz_kaladze@yahoo.com> (Tamaz Kaladze).

(earthquakes, volcano eruptions, etc.) [21 — 23] and also appear as the ionospheric response to the anthropogenic
activity [24 — 27]. Forced oscillations of that kind under the impulsive impacts on the ionosphere and during
magnetospheric storms were also observed [21].
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In recent years increasing number of theoretical and experimental investigations was devoted to the
investigation of dynamics of Rossby type waves (induced by the spatial inhomogeneity of the Coriolis
parameter) in the Earth’s ionosphere. Dokuchaev [28] first indicated the necessity of accounting for interaction
of induced electric current with the Earth’s magnetic field on the winds dynamics. The next step was done by
Tolstoy [29] pointed out the importance of other global factor, acting permanently in the ionosphere - space
inhomogeneity of the geomagnetic field on the dynamics of Rossby type waves in the Earth’s ionospheric E-
layer. The waves were entitled hydromagnetic gradient (HMG) waves. It was also shown that HMG waves can
couple with the Rossby waves in the E-layer heights. He suggested that HMG waves may appear as traveling

perturbations of the S, current system producing from a few to several tenths of nT strong variations of the

geomagnetic field.

Recently, in [30 — 34] was established new type of waves propagating in the ionospheric E-layer. They
can be considered as the generalization of tropospheric Rossby waves by the spatially inhomogeneous
geomagnetic field B, As distinct from HMG waves, these waves do not cause the Earth’s magnetic field
significant perturbation and are produced by the dynamo electric field E4 = v X By . Note that in addition these
waves are caused by the Hall conductivity in the E-layer. The waves of such different from HMG waves nature
were termed “magnetized Rossby (MR) waves” [32].

Both HMG and MR waves compose so called slow long-period group of planetary waves having quite
low phase velocities of the order of the local ionospheric winds (1 — 100 m/s). At middle — latitudes, their
wavelengths ~ 10 km and longer, but the wave period alter from 2 h to 14 days. Correspondingly, the frequency
falls in the range of 10 — 10° s, In the experiments [3 — 5, 9, 10, 14, 20] some characteristics of these waves
are observed.

Under the space (latitudinal) inhomogeneity of the geomagnetic field and Hall effect new type of waves,
so called fast large-scale EM perturbations in the middle-latitude ionosphere also can propagate. In contrast to
the slow waves, the fast modes are associated with oscillations of the ionospheric electrons frozen in the
geomagnetic field and are connected with the large-scale internal vortical electric field generation in the
ionosphere, i.e. E, = Vp X Bo, where Vp= E X B, /By’ is an electron drift velocity. The fast EM waves propagate
along the parallels against the mean-zonal flow to the east as well as to the west. In E-region the phase velocity

of fast waves is sufficiently high |CB| ~ 2 — 20 kms™. Due to the dependence of cg on the density of the charged

particles the appropriate frequency of fast waves ( o ~ k,Cg ) also changes almost by one order of magnitude
during daytime and nighttime. As compared to the slow waves fast modes have relatively high frequency in the
range 10™- 10" s™ with the corresponding periods from 4 min to 6 h and the wavelength > 10° km. In contrast to
the slow modes, fast EM planetary waves give rise to strong pulsations of the geomagnetic field 20 — 80 nT.
Such new type of large — scale ULF wave EM perturbations in the ionospheric E - and F - regions first was
theoretically revealed in [35 — 37], where the first classification of the EM planetary waves into fast and slow
waves also is given. Such fast EM planetary waves are called Khantadze waves and were recorded in the middle
and moderate latitudes during the launching of spacecrafts [18] and fixed by the ionospheric and magnetic world
network observations [9, 19, 38].

Extensive analysis of the planetary EM waves in the ionospheric E - and F - layers is given in [39 — 41].
It was shown that large-scale waves are weakly damped. New type of coupled Rosshy waves with Alfvén waves
first was revealed in [42], where the possibility of existence of the new spatially isolated joint Alfvén — Rossby
nonlinear vortical structures in the Earth’s ionosphere is also shown. We believe that the further investigation of
the nonlinear dynamics of ULF planetary EM waves is so necessary.

In the given paper, we show that the action of the latitudinal inhomogeneity of both the Coriolis
parameter and the geomagnetic field through the vertically propagating geomagnetic field perturbations lead to
the coupled propagation of EM Rossby — Alfvén — Khantadze modes. By this fact the initial equations describing
the appropriate nonlinear dynamics becomes 3D. The aim of the present paper is to investigate the possibility of
mean zonal — flow and magnetic field generation by the EM coupled Rossby — Alfvén — Khantadze (CRAK)
planetary waves in the ionospheric E - layer.
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Ground - based and satellite observations [1, 2] confirm the permanent existence of large-scale
azimuthally symmetric band — like sheared zonal flows surrounding the globe at different layers of the Earth’s
ionosphere and propagating along the parallels with inhomogeneous velocities along the meridians (see, e.g. [43]
). Thus, the Earth’s ionosphere represents the dynamical system of different nature waves and zonal flows.
Under such favorable conditions for nonlinear interactions different EM nonlinear stationary solitary structures
can appear [42, 44].

According to the one existing idea spatially inhomogeneous zonal winds (shear flows) can be produced by
nonuniform heating of the atmospheric layers by solar radiation. First in [45] was suggested the generation
mechanism of zonal flows by tropospheric Rossby waves in neutral atmosphere invoking parametric instability
in terms of the kinetic equation for wave packets. The investigation of zonal — flow generation problem by
Rossby waves was further developed in [46, 47] using the parametric instabilities mechanism on the basis of a
monochromatic four — wave resonant nonlinear interaction. In these papers it was shown that zonal flows in a
non — uniform rotating neutral atmosphere can be excited by finite — amplitude Rossby waves. Accordingly,
these papers study the interaction of pump waves (Rossby waves), a sheared flow and two satellites of the pump
wave (side — band waves). This approach is an alternative to the standard weak turbulence approach used by
[45]. The driving mechanism of this instability is due to the Reynolds stresses, which are inevitably inherent for
finite — amplitude small — scale Rossby waves. Owing to this essential nonlinear mechanism, spectral energy
transfers from small — scale Rossby waves to large — scale enhanced zonal flows (inverse cascade) in the Earth’s
neutral atmosphere. In addition, the zonal - flow generation was considered within a simple model of Rossby
wave turbulence, using the classical nonlinear two — dimensional Charney equation. It was found that the
necessary condition for zonal flow generation is similar to the Lighthill criterion for modulation instability in
nonlinear optics [48]. By the numerical simulation of sheared zonal flow interaction with Rossby waves in the
Earth’s neutral atmosphere [49] is shown that new solitary structures arise to produce the structural turbulence.

Further [50] revealed the new mechanism for the problem of zonal flow generation by the drift waves in
magnetized plasmas adding a scalar nonlinearity of Korteweg — de Vries type to the generalized Hasegawa —
Mima equation containing the vector nonlinearity also. It was shown that in this case zonal — flow generation
always exists and needs no criterion fulfillment.

Investigation of the mean zonal flow generation problem in the Earth’s electrically conducting ionosphere
was firstly undertaken in [51 — 54], where the excitation of zonal flow by MR waves in the ionospheric E - layer
was considered.

However, the investigation of another very important nonlinear process, viz., the generation of mean zonal
flows and magnetic field by EM planetary waves in the ionospheric layers was started recently. Nonlinear
dynamics of coupled Rossby — Khantadze and coupled internal — gravity and Alfvén EM planetary waves in the
weakly ionized ionospheric E — layer was investigated by [55, 56]. It was shown that such EM planetary waves
along with mean zonal flows can generate intense mean magnetic fields also. In the present paper, we will focus
our attention on the Earth’s weakly ionized, conductive ionospheric gas of the E - layer (= 90 — 150 km from
the Earth’s surface) and will consider the generation of mean zonal flow and magnetic field by coupled Rossby —
Alfvén — Khantadze (CRAK) EM planetary waves. Developed in [57, 58] techniques for the case of EM waves
will be used. The paper is organized as follows: In Sec. 2, basic equations modeling the nonlinear propagation of
EM CRAK planetary waves in the ionospheric E - layer are obtained. Linear propagation properties of the EM
coupled Rossby — Alfvén — Khantadze waves are given in detail in Sec. 3. Using the modified parametric
approach, a set of coupled equations describing the nonlinear interaction of pumping EM CRAK planetary
waves with an arbitrary spectrum and zonal flows is derived in Sec. 4. In the same section zonal flow dispersion
relation is also obtained. In Secs. 5 and 6 it is shown that the system of equations obtained in Sec. 4 is unstable to
a three wave parametric instability, whereby a coherent, monochromatic pumping Rossby — Alfvén — Khantadze
waves can drive a band of modes and associated zonal flow and magnetic field generation. Namely, in Sec. 5
zonal flow growth rate is analyzed in detail. In Sec. 6, magnetic field generation dynamics is investigated in
detail. Our discussion and conclusions are presented in Sec. 7.

2. Physical modeling for ionospheric E — layer

We consider the weakly ionized ionospheric E — layer plasma comprising of electrons, ions, and neutral

(molecules) particles. Due to the condition n / N << 1, where n and N are the equilibrium number densities for
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the charged particles and neutrals, respectively and strong collisional coupling between the ions and neutrals the
dynamics of such ionospheric E — layer gas is largely determined by its massive neutral component. Attributable
by the existence of charged particles Ampere force plays the significant role in the problem set along with the
effects of the latitudinal inhomogeneity of the vertical component of the Earth’s angular rotation € and of the
geomagnetic field B,(x) [55]. We also introduce the local Cartesian coordinates (x, y, z) system with the x -
axis directed from the west to the east, y - axis directed from the south to the north and the z - axis along with the
local vertical direction. The following relations for latitude A and longitude ¢ are valid: y = (41— 4,)R and

X =¢Rcos/,, where R is the distance from the Earth’s center. In the defined local coordinate system, the
components of the geomagnetic field vector are B, = (0, B, B,,) = (0, B, cos 1,-2B, sin 1) , where B, is

the equatorial value of the geomagnetic field at a distance R from the Earth’s center. As to the Earth’s angular
velocity ©, we have Q=(0,Q,,,Q,,) = (0,Q,cos 1,Q,sin 1) [55].

According to [33], we can construct the following single-fluid momentum equation which describes the
dynamics of the electrically conducting weakly ionized ionospheric E — layer plasma

ﬂ_{_(v.V)V_{_@_lij-i-zQXV—gZO, )
ot p P

Oy?

where V is the incompressible (V-v=0) neutral gas velocity, o= Nmy is the gas mass density, pis the gas

pressure of the neutral gas and g is the gravitational acceleration. In Eq. (1) along with the Coriolis force the

following Ampere force

FA:lij:—l VxBxB, (2)

P PHy
is taken into account, where g, is the permeability of free space, and B =B, +b is the total magnetic
induction.
From Eq. (1) follows the following equation for vorticityl =V x v :

%g—(Q-V)v+(v-V)§—£[(B-V)VxB—(VxB-V)B]+ 2(v-vy@-(@-vyv]=0. (3

By using the plasma conditionsoin the ionospheric E — layer we may simplify the generalized Ohm’s law
expression. First, the condition @, /v; <<1( @, =eB/m,is the ion cyclotron frequency, and v; is the ion —
neutral collision frequency) allows to consider unmagnetized ions. Due to the high values of v, we can suppose
V; =V, which means that the ions are completely dragged by the ionospheric winds. As to electrons they are
magnetized, @, /v, >>1 (o, is the electron cyclotron frequency and v, is the electron — neutral collision
frequency). It means that electrons are frozen in the external magnetic field and they only experience drift
perpendicular to the magnetic field, i.e v, = v, = ExB/B?. Under such conditions generalized Ohm’s law
for the ionospheric E- layer is [55]

E+vxB=—1jxB=LF, (4)
en en

. . B .
where the right-hand side reflects Hall effect [39]. Then from the Faraday’s law V xE = —%—t we can find the

following equation for the magnetic induction B [55] :
oB 1
—+
ot enu,

In contrast to the ordinary frozen in condition for a conducting fluid this equation contains the second term
which is caused by the action of the Ampere force on the ionized plasma component (the Hall effect).
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Egs. (3) and (5) constitute our initial general equations. In the ionospheric E — layer, the large-scale wave
motions are basically two — dimensional, i.e. V= (vx,vy,O) and by using the incompressibility condition

V-v=0, we can introduce the stream function v (X,y,z), so that v, = -0y /0y, and v, = 0w /X . Further

we will consider sufficiently high latitudes in the northern hemisphere, assuming that the geomagnetic field
B, = B,,(Yy)e, and the Earth’s angular velocity =, (y)e,. Let us suppose that the magnetic induction

perturbation is also two — dimensional, i.e. b =(b,,b,,0) and according to the condition V-B =0, we can
introduce the magnetic function A(X,y,z), sothat b, =0A/dy, and b, = —0A/ox . Then from Eg. (3) we get
aAl'/’+ﬁ‘3"”+3(;y Ap)y=—Lu AR L Gaan. 6)
ot Ply 0T pit
Here, p=0f /oy=20Q,, /0y, A =0;+0; is the two - dimensional (2D) Laplacian and
J(a,b) = 8Xa8yb—8yaﬁxb is the the vector nonlinearity called Jacobian (Poisson bracket). Note that in Eq.

(6) we neglected the term containing 0B,, / 0y compared with the first term on the right — hand side.
To transform magnetic induction Eq. (5) we consider its X—and y — components in terms of magnetic
function A:

2 3 2 2
FA By, aAZ—CB8A+BoZaw+J(W’%)_J(A'a_W):O’ )
oty engy, oxoz G oyoz %y oy

2 3 2 2

O°A B, 0 AZ_CBG ?4_802 oy _’_J(l//’a_A)_J(A’a_l//):O, (8)
otox  enu, oyoz X oxoz X OX

where ¢, = S, /eny,, S, =0B,, /8y . InEgs. (7), and (8) we neglected the terms ~ A’/ L* in comparison with

Ay [ 1®, where L is the scale-length for planetary waves.
Let’s integrate Egs. (7), and (8) by Yy, and X respectively We get

oA O°A

—~ —j VBa, (V)2 — = — deBOZ(y5 A) = F(x,2), (©)
oA B, A OA oy

—_——0z |¢g —C.—+B, = +J(w,A) =F(y,2). 10

ot en'uoj X8225 Cg 8X+ 02 "5, +J(w, A) ,(Y,2) (10)

Here, F, and F, are arbitrary functions of integration. Let us represent in Egs. (9) and (10)
BOz(y) ~ BOz(yO) + yﬁBOZ /8y , then we get

oA B, (Y,) o°A oA oy
— 2 Cy|dyy——-c,—+B —
a enu J Y oxar " B-[ Woxer ®ox o:(¥o) oz
6B 0 )
0z —
j dyy > oz Y+ Iy, M =F(x2),
oA BO oA OA oy
———2|dx -c,—+B —+J(y,A)=F(y,2). 12
o e Moy g T B0 G I A =Fly.) (12)
For the consistency of Egs. (11), and (12) we choose:
2
F(x,2)= B"Z(y())jdy 5 +C jdyy & A2 OBy, jd v : (13)
OXoz OXoz oy oyoz
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F (y Z) — Bm(Yo)j °A (14)

ooy
Then we get the following common equatlon
O0A oA oy
——Cc,—+B ——+J(w,A)=0. 15
ot B ox 0: (Vo) pe (v, A (15)

Equations (6) and (15) compose the initial system of equations for our problem and describe the nonlinear
dynamics of the EM planetary low — frequency wave perturbations in the ionospheric E — layer. From Egs. (6)
and (15), we can obtain the following temporal conservation law of energy &

ot 011 , 1 )

—=—<= \% +—(V,A)]dxdy : =0. 16

- at{zj[p( WY VA y} (16)
3. Linear EM planetary waves

Linear dispersion relation for EM CRAK waves can be readily obtained from Egs. (6) and (15)

(0+ 12 A+ 0g) =KV, )
1L

where @ is the wave frequency, V7 = By, / 0 is the squared Alfvén velocity, and k? =k} +k?, k., k,, and
k, are the components of the wave vector K along the X -, y-, and z- axes. When k, =0 we get the Alfvén
branch of oscillations with the dispersion relation @ = £k,v ,; when k, =0 we get the additional two branches

of oscillations: 1) @ =—k A /k’, which describes the Rosshy waves (slow waves), and 2) @ = —k,c,, which

describes the Khantadze waves (fast waves). Thus the dispersion relation (17) describes the propagation of EM
CRAK waves in the ionospheric E — layer.
The solution of the dispersion equation (17) by taking into account the velocity ¢c; <0

K k?
. |cB|_k€ _\/(|CB|+kﬂJ g | (18)

L

Eqg. (18) represents that EM coupled Rossby — Alfvén — Khantadze waves have two branches of oscillations, one
branch of oscillation @, (with “+” sign before the radical) and other one @, (with “— sign before the radical).

Eq. (18) for the case of small k? << 1reads as follows

k2?2
=k, (fo + k22 (19)
and
w, =K (- 'B -Kk? lfgkz (20)

As to the case of large k? >> 1, we get from Eq. (18)

K k> c
a)m:?x |cB|—k’£2_ /c +4k A1+ |B|ﬂk2 : (21)
x k2[02+42v2J

L

Here we consider k’v3 /k?c2 ~1 to obtain Egs. (19) — (21).
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Thus the branch @, reprsents the Khantadze waves imposed by the action of both the latitudinal

inhomogeneity of the Coriolis force and magnetic field perturbations, while the branch @, represents the Rossby
waves imposed by the same factors. Under the action of these factors Khantadze waves are propagating eastward
with the increased phase velocity @, /K, , while the phase velocity of westward propagating Rossby waves is

also increasing.
The case of small kf << 1, also can be described from Eq. (18)

2
cal+ 53
2 ka_ kx ﬂ
C()lyzzik VA 1+kx —8k2\/2 +? |CB|—k—2 . (22)
z A

z
L

These are Alfvén waves branch imp(;sed by the action of latitudinal inhomogeneity of Coriolis force and
latitudinal inhomogeneity of the geomagnetic field.
We can represent in the /- plane approximation [33] the Coriolis parameter as

f =2Q,, =2Q,sin1 = f,+ By, (23)

with
p= T _ECOSh (24)

oy R
and the geomagnetic field as

B,, =—2B,, sind=y,+ Y, (25)

with

2B, cos

L Ll Y (26)

oy R
By introducing the dimensionless variables k" =k|c,|
dispersion relation (18) as

1/2 s« 1/2 .
1B%, and @' =l B*|c,|[ ", we can rewrite the

Vi, :2—12(X2—1i\/(X2+1)2+4X40{), (27)
’ X
where y=ow'/k;, xX*=Kk}*, and a=k’vi/k’c;. For the ionospheric E — layer parameters
B, ~05x107°T, 2Q,~10"rad/s, n/N ~10°-10°, p=(10"-10")kgm™, we can find that
|CB| ~(@-10)km/s, v, ~(0.1-1)km/s. In Fig. 1, the dependence of dimensionless phase velocity y of

coupled Rossby — Alfvén — Khantadze branches of oscillations on wave number X for the different values of
a=0; 1; 5 is shown. A and B curves correspond to “+” and “~” signs before the radical in Eq. (27),
respectively. Thus A and B curves correspond to @, and w, branches of oscillations in Egs. (19) — (21),

respectively.
We can find the following behavior of y, ,:

a) when x —0,
y, =1+ X’a, and Y, =——-Xa. (28)

b) when X —> o0
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(29)

1 1 1
1=+ rda+——||.
e 2{ X? ( “ x2«/1+4aﬂ

In Egs. (28) and (29) y, and Y, correspond to Khantadze and Alfvén waves, respectively.

4. Nonlinear interaction of coupled Rossby — Alfvén — Khantadze EM planetary waves and zonal flow
dispersion relation

To find the possibility for the zonal flow generation by the EM CRAK planetary waves in the ionospheric E
— layer we will consider the initial nonlinear Egs. (6) and (15). Existing in this equations the nonlinear Jacobian
terms allows to consider a standard four - wave nonlinear interaction, in which the coupling between the pump

X = (v, ﬁ) EM planetary waves and two side - band X = (v, ﬁ) modes drives low - frequency large - scale

X = (1/7,ﬁ) zonal flows with variation only along the y — axis. Accordingly, the total perturbed quantities
X = (y, h) are decomposed in three components,

X=X+X+X, (30)
where
X = [X. () exp(ik - —iot)+ X_(K)exp(-ik-r +im,)], (31)
k
describes pump EM planetary modes spectrum ( X (k) = >"<’: (k), where * means the complex conjugate),
X = Z[X+(k) exp(ik, -r —icg 1)+ X_(K)exp(ik_-r—ieg t)+ c.c.] (32)
k
describes sideband modes spectrum, and
X =X, exp(-iQ¢t +iq, y) +cc. (33)

describes the zonal - flow modes varying only along meridians. Within the local approximation the amplitude of
the zonal flow mode X o = (W,,hy) is assumed constant. The energy and momentum conservations

o, =Q+te, and k, =q,e, +k are fulfilled, and the pairs (o, ,K) and (,q,€,) represent the frequency

and wave vector of the EM planetary pump and zonal - flow modes, respectively. In the sequel we will omit the
index K at o for simplicity.

Substituting Egs. (30) - (33) into (6) and (15), and according to the standard quasilinear procedure ignoring
the small nonlinear term in the relations for the high frequency but not for the low frequency zonal flow modes
we get for the EM planetary modes

(@’ + Bk, =22 kKA,
PHy (34)
(60 + Cka)Ai = BOzkzlﬁi *
From this homogeneous system the dispersion relation (17) for EM planetary modes follows.

Substituting Egs. (30) — (33) into (6) and (15) to obtain the relations for the amplitude of the zonal flow
modes and averaging out over the fast small — scale fluctuations, we get [57, 58]

—iQ, =R, (35)

and B
—QA = R”, (36)

where R and R, are the mixture of Reynolds and electromotive forces, defined by
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R :_<a_waw GWW>+L<%% %%>, an

N ek SV h £ +
X Oy X Oy /| pu,\Oxdy ox oy
and
./ _0A . OA
R =1q, <'//& + W@> (38)

where <> represents the average over fast oscillations. Using the Fourier series (31) and (32), we can write
these quantities as

=2 k.r.(K), (39)
k
and
Ry =0, 2 k.5 (K), (40)
k
where
r.(K) =0, (77, —,57.) + 2K (7.7, +7.97)
1 s S (41)
-—I[a,(AA -AA)+2k (AA +AA)]
PHy
and
HK) =, A - A+yA-yA=yi-yi. (42)
Here we used Eq. (34) for Ai to construct the following auxiliary side — band amplitudes
i+ = ﬁl/}"’ - A+ : (43)

o+K.cCqy

To calculate the functions r, and I, we need to define the side — band amplitudes w, and Ai. According to
Egs. (6) and (15), these amplitudes satisfy the following system [57, 58]

0

k.K,B,,
®+K,.Cy

X

- By, 7 . ~
(C() kJ_+ tk ﬂ)l//+ Fk kJZ_i p;lz A+ = _Hkqu(ka_ - q;)l//il/jo

i (k2 qy) =227 A, (44)
"ot

ikz BOzlpi - (a)i * kaB)Ai = ilkqulﬁiz\) (%% _1j
x~B

We can find the following solutions of the system (44)

|k qy k2v2k2
: =2 . F k2 X ko )——z All:
V. D, v, {l//o|: ( a, (@, £k.cp) a)+kXCJ
% (45)
oA KB K0 (0, K K,
PHy | @+KcC

and
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i ~ k B
A =% D ‘//Jr{l//o{_a)_f_koz (a)kh—kﬂ)’kkBoz(kz q)}

% (46)
= -q;
+ k2, +k g+ yk22
Afor o ]
where
D, = (o,k}, £k B)(w, £k,cy) —kZ Vik:,. (47)

Applying Egs. (45) and (46), the expression (43) for the auxiliary side — band amplitudes takes the following

form
~ ik — |k -d))|w 2y2
4 = K0 7T (ki-a) Zoy g, - k2vi,
B B o+kc; | A ®+K,Cy

(48)

k,B
+(1_w+k02C ‘:J{ 29,0k, + Z,qu_qukyﬁ +Q(kf+q§)}}.

We assume that qy/kL ~Q/w<<1, which is valid in the existing theory of zonal — flow generation [45].

Then, from Eq. (48) follows the distinguished fact that the main contributions of the “magnetic” and “stream
function” side — band amplitudes to the evolution equation of the mean magnetic field mutually cancel each
other [see Egs. (36), (38), (40), and (42)]. If we use the superscripts “(1), (2), ...” to show the order of
magnitudes with respect to q, and €2, then Eq. (47) can be written as follows

D, =+D® +D® +D® + D®, (49)
where
D® = 2q,k,a(w+Kk,C5) +(c0+ K Co )K2Q+Q(ak? +K B) — 2qykyk2vi
D® =—qgkivi + Ok’ + 20,k Qw+K,C5) + axfy (w+K,C5) + 20,k a0
D® =2q,k Q% +Qq; (w+k,Cy) + afqy,
DY = ¢, (50)
If we keep in Eqg. (48) only first two terms over the named above small parameters g, and €2 we get
A= A"+ A2, (51)
where

jo - %S %K{—Qkf (@ks ke J

D® o+kcg (A T wrkc,
) (52)
1o KB Vo 2qykyﬂ—+Qk
o+Kk.Cy A kT
- kg, - —|D?® Qk* (i, k2v?2
ﬂ’(iZ) ==l (1)y V/iAO ® - @kz BOz - >
D DY w+k.cg | A o+K,Cg
(53)

kK,Bo, ¥y K, D® 2D(2)
*[“mﬂ[ 23,8 *‘ﬂqy‘z e Ao K o |

We can prove that the contribution of /1(3 in Eq. (42) is zero. Thus, we get
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(k)= A% —y 1?2, (54)

where for A we can obtain

Ao _ Ky 7. AQ K (Vo g __KVa
(1)2 o+Kk.cy | A T o+ K,Cg
(55)
k.B,, ¥, k g
+|1-—20 20 Ak Bk q Q+q° 2= (ak? +Kk, B —4klw) + QK |
[ a)+kXCB A3j|: xﬁ yqy qy ki ( 1 XIB y ) J.j|}
Consequently, we can transform Eq. (54) to
. Xq —
(k) =1 (])_I)Z (f|| l//o + f||AA\))1 (56)
where
k B k g
fv=—=2"2_J_k B9°| 20 +k,C, +—=
It CO+kXCB{ xﬂqy( x~B ki
(57)
k2 2 2
_4k—§mj+2kyqu[2kx,8+kLa)+kL(a)+kXcB)]},
€
it = : Q%k | kiCo kxzﬁ
o+K,Cg kT
21,2,,2 2 kxﬂ
+0,0k, | -4k, B(o+k,Cy) -2k K, vy —20KT| 0+ 2 (58)
1
+q§kx—2ﬁ(a)+kXcB) ok +k -4k w+k? a)+kx—2ﬂ :
ki ki
In Eq. (56) we introduced the intensity of pumping waves
Ik = 2‘//4—‘//—' (59)
Analogously we can transform Eqg. (41). To this end, we represent the solution (45) as the expansion
v, = +y?, (60)
where
ik, k? 22 k,B
s L A RS FRLCAT S, PPy L (61)
B D() a)+kx B /Jo
ik, g, ~ k2y2 D® k2y2
T Ly, k2Q—-2q.k z A4 kil o+k,cy +—2—
Ve T oV {W{ . %y o+kc, DO ( A K,Cq
(62)
B 2 (2)
+AOkZB°Z( ki +20,k, 2k2D j}
Ply \ @+K,Cq
Similarly for Eq. (46) we have the expansion
A, =AD + AL, (63)
where
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2
A .kE;qu{ _kZBOZ[a)k Tk, k]

@ +K,Cq
~ k?k>v4
+ k? +Kk f+—2-A ||
A)(a)L xﬂ a)+kXC j:|
; dy ~ | Qk? +2q,k,® D‘Z’(a)k2+k,8
AY =i =2 K,By,| — -

_ D@ k’kZv?
+A{Qkf+2qykya) 50 (a)k2+k ﬂ+a)l+k . ﬂ}

Accordingly, for Eq. (41) we get
ik, Y p
r (k) =Wlk(fi v+ f0A),

where
8k3k2viq2k.c 2y/2 2y/2
frocoeVabbCel | KiVa g of gkeak? —KiVa
®+K,Cg ®+K,Cg ®+K,Cg
k>v3
+4k5kf(co+ k.cg)? —ki(w+k,cg)® —kik’va —12k§(cokf +k, p)——>—
o+K,.Cy
+k2v 2(cok +k B)? L K2K2Y , K2 +Kk B
Mo+keg)? T Va w+kec, |
2.,2
fJ_A — kZBOZ {8k3q2|:a)k C k2 2A+ a)szA :|
PHy o +K,C
2,,2
+qy§2{4kja)kf K:Va i fvi\ﬂuk (@+K.Cy)
+kaB) ( + X B)
21,2 2 KVa 21,2 2, 12
— 4k kT (0 +kcg) + 4k ki ——=—-12k Tk o +8k, (k| +k, )
®+K,Cq
+40%kk k, K% kicq }
o+Kk,c
Using Egs. (39), (40), (56), and (66), we can reduce Egs. (35) and (36) to the following form:
{l//o IW!//O+ILA)
A= I|| '//o+||| Abv
where
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ked, i [ o Kok, o Jif
g :Zk:QDy“)2 {8 kzyll Vidly +kicB

2

E }(a)kz +k B)? (70)

L

+qu{(a)+kch)2kj(4k2 k )+[1 12

2 3
—KKEVE + 8Kk ? + WHM}},

kz(a)+kXcB)
kq k B kipc,
IA: Xy I 70z 8k3 2
* Zk:QD(l)Z “ pu, Ay K

k? +k S
+0.0 4k LT Lok e k2 (K2 = 2k2) +12k 2K
qy |: ya) a)+kXCB (CU X B) L( 1 y) y xﬂ (71)

2 2 2
-2 (a)kL + kxﬂ) :|+4QZkiky L_ki a)k + k ﬂj}

o+K,Cy o+K.cC

kia, kB K2
I\lly :_; D(1)é|k o { k ,qu [2(0+k Cg + f 4—ya)]
kY

2
o+K,.Cy kT

(72)
+2k,0,Q[ 2k, B +k? 20 +k cB)]}
ks, 1 1
I = —z D(l)yz I ke, {szj {a)+ K, Cq —k—z(a)kf + kx,b’)}
L
— 0,0k, [ 4k, B(0+K,Cp) + 2k KV, + 20(ak? +K ) | (73)
20258 (o4 ke, ) (k? +k. B - 2k2e)
qy k2 2 x~B @ 1 xﬂ ya) '
1
In Egs. (70) — (73)
DY = (Q-q,V,)[ ki (@+k,c5) +ak? +k,B], (74)
where V is the zonal — flow group velocity given by
ow k, K, (o+K.Cg)
Ve = =27 s ° ' (75)
aky kl (za)kL + kikaB + kxﬁ)
From the system of Egs. (69), we get the following zonal — flow dispersion relation:
1—(If+I”A)+I |f||'(=o. (76)

Further we will show that in the most interestlng case this biquadratic with respect to Q —q,V, zonal flow

dispersion relation can be reduced to a quadratic one.
Let us consider the monochromatic wave packet case of the primary modes, which means a single wave

vector on the right — hand sides of Egs. (70) — (73). Because the values I"’ and I | are of the order of O(q ),
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while 1" and If are of O(2) , we conclude that the right — hand sides of these equations will match only if the
value QQ—q,V, isalso a small parameter. Therefore the zonal — flow dispersion relation (76) reduces to

1=1%, (77)
or,
(Q_qug)2 =-T7?, (78)
where T'? means the squared zonal — flow growth rate defined by
kZg’l
re=- Ayl ak k2k2v2 — 8
(@+k,Co)|2+k,Co)k? +k, ] o+kcy
(C()-I—k CB) ) ) ) , kj , ,
+ : ki (o+k,Cz) (4k; —k{)-12—=- (k[ +k 79
[+ ko) 1k ]| < (@ KeCo) (3 =KD =124 (kT k) (79)

2 3
CKKV2 + Bk a(ak? 1 K, B) + (ak? +k, B)? + KK |
KZ(0+K,Cy)

5. Generation of zonal flow
The most suitable case to analyze the zonal flow growth rate is k, = 0. Therefore for this case the zonal

flow growth rate (79) takes the form
qi I kkx

=
[w+k,co)k, + ]

(80)
3
| (@+k ¢, 7K + KAV — (ak, + Byk, — Rt B) |
(0+k,C5)
By using the solution (18), Eq. (80) becomes
2021, k2(K?|c,|+
1_,2 qy k x( x| B| ﬂ) (81)

Koo+ BFK [eo| + B) + akicEa
Here, o =k’v4/k’c?, the upper (minus) sign before the radical belongs to Khantadze branch w,, and the
lower one to Rossby branch w, .

It is seen from Eq. (81) that Khantadze waves give no contribution (I'? < 0) to the generation of zonal flow,
but the maximum growth rate is achieved by Rossby waves having the dispersion @ =—£/k, at a =0. In this
case

I? =gkl . (82)
This value coincides with the maximum value of growth rate achieved in the problem [54, 55].
If we introduce the dimensionless variables X and y used for Eq. (27), we rewrite Eq. (81) as follows

}/_1"_2_ 2x%(x% +1)
Ko X2 +1F (2 +1)? + 4x*a ’

where the normalization constant K :qilkﬂ/|c8|. In Fig. 2, the dependence of the function y on wave

(83)

number X for the different values of « is shown. A and B curves correspond to “~” and “+” signs before the
radical in Eq. (83), respectively.
6. Magnetic field generation

From Eq. (69) it follows that
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_ v
éz I =, (84)
v, 1-1
or taking into account that I”A ~ O(qf,) , We get
L TS )
Yo

Thus the value of the generated mean magnetic field is the order of qj in comparison with the mean zonal flow

value. Using Egs. (78) and (79) we getat Q2 =q,V, (use also Eqg. (75) for V, ):

ézq)zlkxszOz:BM’ (86)
Yo N
where
M = 20k ? +k2k,C, +k, 8 — 4k 2w — 4k (w+K,Cq) — 4k 2K, 3 @ +K,Cq @7)
1 1™x“B X y y X B y Rx Za)ki"'kikXCB-Fkxﬂ,
2 2 kz
N = 4k k2k2vak?e, AT IGC HIGB sk ey) 4t 1
®+K,Cpg k?
—K°K2V2 (0 +K,Cq) +8kZak tk2v2 —12k 2k 2k 2V2 (k2 + K, )
(88)

+k Ik VA (kT + K, B) + (k] +K, ).
Thus, when k,k,B,, 8 # 0 mean magnetic field is also generated along with the mean zonal flow generation.
As in the case of Eq. (80) we consider ky =0, then from Eq. (86) we get

A, » K P
—_ = q —+ zﬂ_l (89)
l//O ’ kx ’ Q
where
P =2awk, +kicg + f3,
Q =k (@+k,Cp)* —kk; Vi (@+k,Cp) + kek; Vi (ak, + ) + (ak, + )’ (90)
=~ (kic, - B)[(2w + k.o )k, + B] .
Then
A k B
e - (o)
4 kx (ﬂ_kaB)[(2w+kaB)kx +ﬂ]
Substituting the solution (18), we get
'E\) -+ 2 BOZIB|CB| \/E 92
— =0 K2 K2 2 Ak ol (92)
Yo Vi (B+K; |CB|)[(|CB| , T B)° +ak acg]
For the evaluation order we get
A ’B,, |c
A BBl o 93)
Yo V,p
In the dimensionless variables X and Yy used for Eq. (27), we get from Eq. (92)
§:+q§BOZ |CB| \/; . (94)
Wy VB (@+xA)[L+x*)? +4x*al"?
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shown. A and B curves correspond to “+”” and “~” signs in Eq. (94).

In Fig. 3 the dependence of the function A = on wave number X for the values o =1;51is

7. Discussions and conclusions

In this paper, the nonlinear generation of large — scale, and low — frequency zonal flows and magnetic fields
by relatively small — scale ULF EM coupled Rossby — Alfvén — Khantadze (CRAK) planetary waves is
investigated in the Earth’s ionospheric E — layer. The importance of latitudinal non-homogeneity of both
Coriolis parameter and the geomagnetic field along with the prevalent effect of Hall conductivity for CRAK is
shown. In addition, accounting of the vertically directed propagation of the perturbations under the consideration
leads to the z-dependence and the problem becomes essentially three-dimensional. As a result, owing to the
existence of magnetic field perturbations, Alfvén waves also became incorporated in the dynamics of problem.
Action of these effects leads to the coupled propagation of EM Rossby — Alfvén — Khantadze modes, which are
described by the system of nonlinear Egs. (6) and (15). Due to such coupling dispersion of both Alfvén and
Khantadze waves appeared. Note that the long-lived (compared to linear wave packets) nonlinear structures can
be formed under the condition when the waves dispersion is compensated by their nonlinearity.

The dispersion relation for the linear EM CRAK is obtained [see Eq. (17)] and analyzed in detail in Sec. 3.

The mode is composed by two branches @, and @, . For small values of perpendicular wave number k, the

frequencies @, and @, can be described analytically by Egs. (19) and (20) while for large values of k, by Eq.

(21). Analytical expression for the corresponding new type of Alfvén waves is given by Eq. (22). All branches of
oscillations are mutually influenced. Depending on the perpendicular wave number the appropriate behavior of

phase velocities @, ,/k, for the different values of parameter o =k?v3/kZc; is given in Fig. 1 (Curves A
belong to @, and B ones to , ). It is clarified that in case of small k, the phase velocity of the branch @,
tends to the finite value @ /K, = |cB| and corresponds to Khantadze waves, while for the branch @, it tends to

the —oo, which corresponds to Rossby waves. For the large values of k, the phase velocity of the branch @,

tends to the finite value o, /k, = %|CB|(1+ N1+4ca) which is more then |c;|. Thus the existence of Alfvén

waves causes the increase of the phase velocity of Khantadze waves as compared with the case a =0. As to the
case of Rossby waves for the large values of the perpendicular wave number K, the phase velocity of the branch

. 1 o :
o, tends to the finite value w, /K, = E|CB|(1_ V1+4a)<0. Thus in this case Alfvén waves cause the increase

of the phase velocity of Rossby waves as compared with the case & =0. Note that in case of k, >0 the branch
of Khantadze waves (w,) propagates along the latitude circles eastward, while the branch of Rossby waves

(w, ) along the latitude circles westward against a background of mean zonal wind.

a=1 a=5 =0

| I—— ! |
1 - A I A
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Fig. 1. Dependence of phase velocity of coupled Rossby — Alfvén — Khantadze modes on wave number X at
different values of < .

Dealing with zonal flows and magnetic fields generation problem by EM CRAK modes in the weakly
ionized ionospheric E-layer gas we have used the modified parametric approach [58] and the spectrum of
primary modes is assumed to be arbitrary [see Eq. (31)]. Then, instead of the side-band amplitude for a single
wave vector k, we have dealt with a spectrum of such amplitudes [see Eq. (32)] and as a consequence the
appropriate driving forces are presented as summation (or integration) over the spectrum of the primary modes
[see Eqg. (39) and (40)]. The developed method can be effectively used for different types of primary modes
having arbitrary spectrum broadening. To describe the nonlinear dynamics of the zonal flows and magnetic
fields generation by EM CRAK waves the appropriate system of coupled equations is obtained [see Egs. (35)
and (36)]. We have shown that these equations are unstable to four wave parametric instability and the coherent,
monochromatic CRAK waves can drive a band of modes and corresponding zonal flow and magnetic field
unstable. Thus, we have investigated the interaction of a pump CRAK modes, two their satellites (side-band
waves) and a sheared zonal flow. For the monochromatic wave packet the instability [see Eq. (78)] is of the
hydrodynamic type. The nonlinear instability mechanism is driven by the vorticity advection leading to the
inverse energy cascade toward the longer wavelength. Consequently, short wavelength turbulence of CRAK
waves is unstable causing the excitation of low-frequency and large-scale perturbations of the zonal flow and
magnetic field. It is shown that in the system of Egs. (35) and (36) controlling the evolution of zonal flow and
magnetic field the driving mechanism of the instability is associated with the mixture of mean Reynolds and

Maxwell stresses R, [see Eq. (37)] and mean electromotive force R, [see Eq. (38)], respectively.

a=0 a=1 a=5

vl v / ’)’ffl ]
‘ [ — =
! 7 % /A-\

00 03 10 15 20 00 05 10 15 20 25 0

X X X
Fig. 2. Dependence of the function ) on wave number X at different values of < .

We studied the propagation of zonal flow along the geographical parallels when the corresponding mean flow
velocity depends only on the meridional y-coordinates. From our investigations it is seen that the maximum

growth rate of the zonal flow generation is achieved at ky =0, when the group velocity V, =0 [see Eqg. (75)]

and therefore the real part of oscillations for zonal flow becomes zero. In this case the excitation of zonal flow is
stipulated only by Rossby waves and the corresponding growth rate is (see Eqg. (82))

T ~|a k1 87,], (95)
which is equal to the maximum growth rate achieved in the problems [Kaladze et al. 2009, 2012]. In Eq. (95) the
stream function y, of pump modes is normalized by V.r,, where Vv, = S’ is the Rosshy velocity and

r, =c,/ f (c,is the equivalent sound speed in the ionospheric E-layer) is the Rossby radius, respectively. Here
for this regime, we have g f, ~0.1 k. ~10, 1, 10°m, #~10""'m™s™, and 7, ~107. Then, the

numerical value for the zonal flow growth rate becomes I" ~10~"s™ . This estimation is consistent with existing
observations, and conducted investigations provide the essential nonlinear mechanism for the driving spectral
energy from short-scale CRAK waves to large-scale reinforced zonal flows in the Earth’s ionosphere.
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In Fig.2 the dependence of the squared dimensionless growth rate y on the wave number x (see Eq. (83)) for
the different values of « is shown (curves A belong to the branch @, and B ones to w,). It is seen that
Khantadze waves (@, ) don’t contribute in the generation of zonal flow, for them y < 0. The maximum growth
rate is achieved for the Rossby waves branch w,at o =0. This is the case when Alfvén waves also don’t

contribute in the growth rate. Thus the generation of zonal flow is mainly stipulated by Rossby waves. With
increase of « the growth rate is decreasing in accordance with Eqg. (83).
Here, the mean magnetic field excitation has the special attention and its dynamics is described with detail in

Sec. 6. Generated magnetic field is of the order q§ with respect to the excited mean zonal flow and is caused
only by the existence of Alfvén waves. Excited mean magnetic field has the prevalent component by (as in the
calculations we gave the priority to ky = 0 consideration) and as the zonal flow is sheared in the meridional y-
direction. It is found that the ratio of the mean magnetic function KO to mean zonal flow y strongly depends on

the pumping wave branches of @ (see Eqg. (91)). After the substitution of @ from Eq. (18), we get Eq. (92),
which shows that both Rossby (@, ) and Khantadze (@, ) branches give symmetric by sign contributions in the

generation of the magnetic field component by. The following estimation for the generated magnetic field (see
Eqg. (93)) is valid
2
_ B,|C
|~ 2% 0%l (96)
VAﬁrR
where the Rossby radius I is chosen as the characteristic scale-length. Numerically, to approximate this value,
we consider |CB| ~@-10)km/s, v, ~(0.1-1)km/s, B, ~0.5x10"*T, A ~10"m™s™, and consider
W, = VI, (where V= (1-100)m/s) is the local ionospheric mean wind’s velocity). Then, the values for the

excited mean magnetic field becomes ‘Ey‘:(lOz—log)nT. Consequently, the intensification of the

geomagnetic field perturbed pulses takes place.
a=1 a=5
‘ : : : S

“ 00 05 10 15 20 0.0 0.3 1.0 L5 20

Fig. 3. Dependence of the function A on wave number X at different values of & .

In Fig.3 the dependence of the dimensionless ratio (see Eq. (94)) on wave number x for the values  =1,5is

shown. The curve A belongs to Khantadze waves contribution, while the curve B to Rosshy waves contribution.
Note that for the large latitude in the northern hemisphere our consideration has been limited to the nearly
constant dipole geomagnetic field.
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Placed on the solid ground magnetometer chains register large-scale variations of exposed origin in OB .
However, the incoming values are much lower than those in the E-layer since 0B falls off exponentially below
the conductive slab (e.g., [59]), i.e. OB ocexp(—2zd/A), where d ~150kmis the characteristic scale at the E-

layer heights. For the discussing planetary wavelengths A ~10°km and the estimated damping rate is of order
unity. We would like to note that studied in the given paper theoretically ULF electromagnetic modes in the E-
layer are not adequately studied experimentally and further experimental studies are required.

Thus, in this paper the conducted investigation shows that parametric instability becomes a sufficient
nonlinear mechanism to drive large-scale zonal flows and intense mean magnetic field in the weakly ionized
ionosphere E-layer.
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I'enepupoBaHue 30HAJIBLHOIO TEYECHUSI © MATHUTHOIO MOJISI CHENJIEHHBIMH
BosiHamu Poccon-AubpBena-Xanranze B E-ciioe nonocdepsi 3emiin

T. 1. Kananze, B. Xopton, JI. 3. Kaxsion, O. [Toxorenos, O. OHullIEHKO
Pestome

[Tokazano, uto B ciiabonoHu3npoBaHHOM E-croe nonocdepst 3emiu, rae npeodiaaiaeT XomI0BCKas
MPOBOJIUMOCTD IIJIa3MbI, MOXET CYILIECTBOBATh HOBBIM THUN CLEIUIEHHBIX 3JEKTPOMArHUTHHIX (OM)
wiaHeTapHsix  BonH — PoccOu-AnbdBena-Xantamze  (CPAX),  0oOycClOBIEHHBIX  HIMPOTHOMN
HEOJIHOPOJAHOCThIO KOPHUOJIMCOBA MapaMeTpa 3emyid U reomarHutHoro mnouss. Ilox BozaeiicTBuem
TaKoro CHEIUIeHHS BO30Y>KIaeTcsl HOBBIM THN Jucreprupyronmx BoidH Aunbdsena. HMccnenyercs
TeHEPUPOBAHUE CABUTOBOIO 30HAJIBHOTO TEUEHHUs M MarHUTHOro mnossi moxa aeiicteBuem CPAX OM
IJIaHETapHbIX BOJIH. HenunHeWHbI MeXaHU3M HEYCTOMYMBOCTH OCHOBBIBAETCSA HA IAPAMETPUUYECKOM
BO30YX/JICHUM 30HAIBHOTO TEUEHUSI TMOCPEACTBOM B3aMMOJICUCTBHS YETHIPEX BOJH, BEAYIIUX K
WHBEPCHOHHOMY KacKaJlly SHEPTMH B CTOpPOHY Ooliee ANUHHBIX BONH. BriBemena cucrema 3D
CHEIUIEHHBIX YpaBHEHUH, ONMMCHIBAIONINX HEJIMHEWHOE B3auMoaeicTBue HakaunBarommx CPAX BonH u
30HANIBHOTO TeueHus. OrnpenesneHsl CKOPOCTh pPOCTa COOTBETCTBYIOLIEH HEYCTOMYMBOCTH U
YCHOBUSUIA MX ynpaBieHus. OOHapyX eHO, YTO POCT CKOPOCTH TJaBHBIM 00pa3oM OOYCIIOBIICH
BosiHaMu PoccOu, a reHepanus MarHUTHOTO TOJS CPeJHEHl MHTEHCHBHOCTH BBI3BIBAETCS BOJHAMH
AnbdBeHa.
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