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Abstract

This work is devoted to study of transient growth and further linear and nonlinear dynamics of planetary
electromagnetic (EM) ultra-low-frequency internal waves (ULFW) in the rotating dissipative ionosphere due to
non-normal mechanism, stipulated by presence of inhomogeneous zonal wind (shear flow). Planetary EM
ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous
geomagnetic field. An effective linear mechanism responsible for the generation and transient intensification of
large scale EM ULF waves in the shear flow is found. It has been shown that the shear flow driven wave
perturbations effectively extract energy of the shear flow and temporally algebraic increasing own amplitude
and energy (by several orders). With amplitude growth the nonlinear mechanism of self-localization is turned
on and these perturbations undergo self organization in the form of the nonlinear solitary vortex structures due
to nonlinear twisting of the perturbation’s front. Depending on the features of the velocity profiles of the shear
flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and
vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex
structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex
ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic
time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortex structures transfer the
trapped particles of medium and also energy and heat. Thus the structures under study may represent the ULF
electromagnetic wave macro turbulence structural element in the ionosphere.

Keywords: ULF electromagnetic wave, Inhomogeneous geomagnetic field, Shear flow, non-modal
approach, Nonlinear solitary vortex structures.
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1. Introduction

In the work presented here, we continue to study a special type of internal waves, which appear in the
ionosphere under the influence of the spatially inhomogeneous geomagnetic field and the Earth’s rotation
velocity (Aburjania et al 2002, 2003, 2004, 2007). So, we are interested in large-scale (planetary) ultra-low-
frequency (ULF) electromagnetic (EM) slow and fast wave motions in the ionospheric medium (consisting of

electrons, ions and neutral particles), which have a horizontal linear scale L, of order 10° km and higher, a
vertical scale L, of altitude scale order H (L, = H). In the mid-latitude E-layer, slow ULF waves have phase
velocities of 1-100 m/s along the parallels, and period variations from several hours to tens of days, i.e. they

have the frequencies in the range of (10‘4 —10‘6) s as it is obvious from the long-term observations
(Cavalieri et al. 1974; Manson et al. 1981; Sharadze et al. 1989; Zhou et al. 1997). In contrast to conventional
planetary Rossby waves, they give rise to a perturbation of the geomagnetic field (a few nanoteslas (nT)) — a
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circumstance that gives evidence of their electromagnetic nature. These waves are generated by the electrostatic
dynamo electric field of polarizationE, =V xH, /¢, where H is the strength of the geomagnetic field, V is

velocity, ¢ is light speed. Observations also show, that at temperate and mid-latitudes of the ionospheric E-
region there are large-scale, relatively fast planetary electromagnetic wave perturbations, which propagate along
the parallels with velocity of order of 2-20 km/s, their periods vary from several of minutes to a few hours, i.e.

they have the frequencies in the range of (10" —10™*) s?, and an amplitude from hundreds to thousand of nT,
as it is obvious from the observations (Al’perovich et al. 1982; Sharadze et al. 1988; Burmaka et al. 2004;
Georgieva et al. 2005). Fast waves are generated by the latitudinal gradient of the geomagnetic field and the

Hall effect and represent a variation of the vortical electric field — E,=VyxH,/c, where

V, =ExH, c/H; is an electron drift velocity. The fast waves are caused by the oscillations of electrons,

completely frozen in the geomagnetic field. The phase velocities of these perturbations differ by magnitude at
daily and nightly conditions in the E-layer of the ionosphere. In the mid-latitude F-layer the fast planetary
electromagnetic wave perturbations propagate east-west along lines of constant latitude with a phase velocity of
several units-tens of km/s; the periods range from a few seconds to several minutes, i.e. they have the

frequencies in the range of (101—10‘3) sand accompanied by strong pulsation of the geomagnetic field

(20—10° nT), as it is obvious from the observations (Sorokin, 1988; Sharadze et al. 1988; Burmaka et al. 2004;
Georgieva et al. 2005; Fagundas et al. 2005). The phase velocity of the fast magneto-ionospheric wave
perturbations in the F-layer does not vary noticeably on the period of a day, but depends on the ionospheric
ionization levels.

These perturbations represent the eigen oscillations of the E and F-regions of the ionosphere and they are
responsible for ionospheric electromagnetic weather formation. Such forced oscillations are observed at impulse
action on the ionosphere from above - at magnetic storms (Haykowicz, 1991), from bellow — at seismic activity,
volcano eruption and anthropogenic activities (Pokhotelov et al. 1995; Shaefer et al. 1999). So, at external
influences these oscillations will be excited or amplified first in the ionosphere as eigen modes of the
ionospheric resonator. Thus, these waves may be represented also ionospheric electromagnetic response on
natural and artificial activities.

Observations (Gershman, 1975; Gossard and Hooke, 1975; Kamide and Chian, 2007) show also, that
spatially inhomogeneous zonal winds (shear flows), produced by nonuniform heating of the atmospheric layers
by solar radiation, permanently exist in the atmosphere and ionosphere layers. Herewith, investigation of the
problem of generation and evolution of ionospheric EM ULF electromagnetic waves at interaction with the
inhomogeneous zonal wind (shear flow) becomes important.

2. The governing equations

We choose our model as a two-dimensional g —plane with sheared flow. Since the length of planetary waves
(A1 >10°km) is comparable with the Earth’s radius R, we investigate such notions in approximation of the
3 —plane, which was specially developed for analysis of large-scale processes (Pedlosky, 1978), in the
“standard” coordinate system. In this system, the X -axis is directed along the parallel to the east, the y -axis
along the meridian to the north and the z-axis — vertically upwards (the local Cartesian system). For
simplicity, the equilibrium velocityV,, geomagnetic field H,, perturbed magnetic field h and frequency of

Earth’s rotation Q, are given by V, = V,(y)e,, Hy(0,0,-H_ cos6), h(0,0,h,), Q,(0,0,Q,cos0).
Here and elsewhere € (e,,e,,€,) denotes a unit vector, H, =5x10" T is the value of geomagnetic field

strength in the pole and we suppose that geomagnetic colatitude 6 coincides with a geographical colatitude 0’ .
In the ionosphere the large-scale motions are quasi-horizontal (two-dimensional) (Aburjania et al. 2002; 2003;

2006) and hydrodynamic velocity of the particles V = (ny,Vy,O) . The fluid is assumed to be incompressible
and therefore a stream function y can be defined trough V = [V, e,]. Medium motion is considered near the
latitude ¢, =7 /2-6,.

Not considering any more detail in the new under review branches of planetary waves (see Aburjania et al ,
(2002-2004, 2007)) we would like to note that beginning with the altitude of 80 km and higher, the upper

atmosphere of the Earth is a strongly dissipative medium. Often when modelling large-scale processes for this
region of the upper atmosphere, effective coefficient of Rayleigh friction between the ionospheric layers is
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introduced. The role of the ion friction rapidly increases at the altitudes above 120 km (Kelley, 1989, Kamide
and Chian, 2007) and its analytical expression coincides with the Rayleigh friction formula (Aburjania and

Chargazia, 2007). Therefore, often during a study of large-scale (10° —10*)km, ULF (10—107°)s™ wavy
structures in the ionosphere, we will apply the well-known Rayleigh formula to dissipative force F=—-—AV,
assuming the altitudes above (80—130)km A ~107° s™*(Dickinson, 1969; Gosard and Hooke, 1975), and the
altitudes above 130 km A =Nv;,/N,,, where N and N, denote concentrations of the charged particles and
neutral particles, v;, is frequency of collision of ions with molecules (Gershman, 1974; Kelley, 1989;

Al’perovich and Fedorov, 2007).

The governing equations of the considered problem are the closed system of magnetohydrodynamic
equations of the electrically conducting ionosphere (Gershman, 1974; Kelley, 1989; Aburjania et al. 2004; 2007;
Al’perovich and Fedorov, 2007). The solution of the temporal evolution of inhomogeneously sheared flow
reduces to solution of the set of nonlinear partial differential equations for y and magnetic field perturbation,

h, (see Aburjania et al. 2002):

8 d "\ O oh
—+V,(Y)— |Aw +(B-V, )| —+C, —+AAw =J(v,Av), 1
(at () j w+(p 0)8x W TAAY =3 Ay) (1)
(G e G- G- ?
Here
8290 1 a ZQOSineo
=220 = T (2=
o] o R&G( 0) R
eN oHy, N eH, _ d¥V(y)
cH
_ N g o aHOzz_ P_sing, <0,
N,Mc 4zeN oy 47reNR
2 2
L0 LD yapy-B.d 2 ®)
o’ oy X oy oy ox

p=N,M s density of neutral particles; mand M are masses of electrons and ions (molecules); e is the
magnitude of the electron charge; ¢ is the light speed. Further we consider a motion in neighborhood of fixed
latitude (6 =6,). The dimensionless parameter ¢ is introduced here for convenience. In the ionospheric E
region (80 —150)km, where the Hall effect plays an important role, this parameter is equal to unity (6 =1). In
the F region (200 — 600) km, where the Hall effect is absent, & turns to zero (6 = 0).

The system of Egs. (1), (2), at corresponding initial and boundary conditions, describes nonlinear evolution
of the spatial two-dimensional large-scale ULF electromagnetic perturbations in sheared incompressible
ionospheric E- and F-regions.

From the equations (1), (2) we determine the temporal evolution of the energy of wavy structures, E( x,y,t)
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and the potential enstrophy Q of wave perturbations:

Q o1 vhf oh oh oy 8
Q {I{|Aw|2+|k2|Jd ] jvo—add—jvo —W%dxdy—AﬂAwfdxdy. (6)

o ot 2 ?

We note that in the absence of zonal flow (V, =0) and Rayleigh friction ( A4 =0) the wavy structure energy and
enstrophy are conserved.
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Therefore, the existence of sheared zonal flow can be considered as the presence of an external energy
source. One can see, that presented zonal shear flow (term withV,(y) in (4)) feeds the medium with external

source of energy for generation of the wave structures (development of the shear flow instability). In this case it
is necessary the velocity of the shear flow to have at least the first derivative according to meridional coordinate

different from zero (V(;( y)=0). This conclusion can be made by virtue of above used modal (local - spectral)

approach, which can’t give much information about the features of the shear flow instability. But this doesn’t
mean that such instability always arises and remains in such form. This is exactly due to non-adequacy of modal
approach at investigation of the features of shear flows, which is already considered in the introduction. In shear
flows the modal approach can detect only possibility of instability. But for investigation of instability generation
conditions and its temporal development in the ionosphere an alternative approach, namely, non-modal
mathematical analysis becomes necessary. As it will be shown in the section 4 on the basis of more adequate
method for such problems —nonmodal approximation, shear flows can become unstable transiently till the
condition of the strong relationship between the shear flows and wave perturbations is satisfied (Chagelishvili et
al. 1996; Aburjania et al. 2006), e. i. the perturbation falls into amplification region in the wave number space.
Leaving this region, e. i. when the perturbation passes to the damping region in the wave vector space, it returns
an energy to the shear flow and so on (if the nonlinear processes and self-organization of the vortex structure
will not develop before) (Aburjania et al. 2006). The experimental and observation data shows the same
(Gossard and Hooke, 1975; Pedlosky, 1979; Gill, 1982). Thus, non-uniform zonal wind or shear flow can
generate and/or intensify the internal gravity waves in the ionosphere and provoke transient growth of
amplitude, i.e. transient transport the medium into an unstable state. In the section 4 we confirm this view by
using a different, more self-consistent method for the shear flow.

3. Local dispersion relation

Equations (1) and (2) are partial differential equations the variable coefficients of which depend on the spatial
coordinate y. An analysis of the existence of nontrivial solutions by direct expansion of the physical quantities
in Fourier integrals it is impossible even for the initial stage of the evolution of wave perturbations. This is why
we have to use a local approximation by assuming that the coefficients of Egs. (1) and (2) are locally uniform
(constant), (vo = const ). This approach justifies the use of the Fourier expansion in spatial and time variables to

analyze the spectrum of the perturbations described by these equations (Mikhailovskii, 1974).
We represent the solution to Egs. (1) and (2) in terms of the spatiotemporal Fourier expansion of the wave
perturbations:

[y Oy, 00001 = [Tk kg )hCky Ky Texp (i kex+kyy - ot ] fdkydk, (7)

where k is the wave vector and o is the frequency. Substituting representation (7) into Egs. (1) and (2) yields
the dispersion relation

k.Cy
2

2
a~)2+(|t—§ﬂ—§-kXCH+iAJa~)—5- (kxﬂ+iAk2)—t—;cHﬂH 0. (8)

12
Here @=w—Kk,V,. Assuming that the wave number k =(kf +k§) is real, and the frequency is complex,

@=awy—kNp+iy =@ +iy, || <<y, and taking in to account that the velocity C; <0 and Sy <0, we
obtain from dispersion relation (8) the spectrum of linear perturbations
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where o = axy — KV, and the damping rate

O -k, |ICy |+ A
y=- ( kx|ﬂH| @) . (10)
(2a;l+ kX2 +5-kx|cH|)

From formula (9) we can determine two wave branches:

K 1/2
a;(()l'z)=kxvo+ﬁ{—5|CH|k2—ﬂi{(5|CH|k2+ﬁ)2—4k2|CH|(5ﬂ_|IBH|)} } (11)

92



(i) E-region(s=1).

For E region of the ionosphere, where the Hall effect plays an essential role( o =1), the equations (11) and (10)
obtain the following form respectively:

(12) 2 12
&) Culk+p 1 { 2 2 2 }
=V, — + Culk“+p) —4|Cylk : 12
R ~z{(lCulk?+ ) —4lculk®s (12)
(ke |Ch |+ )A
y=- *'k“ﬂ| (13)
(Za)l+ ;2 +ky |Ch |J
Here 8 = B —|Bu].
Equation (12) describes the propagation ULF planetary electromagnetic waves in the ionospheric E-layer
having two branches of oscillations fast ") (with “+” sign before the radical) and slow @{?) (with “— sign

before the radical). The fast and slow mode (12) is an eigen oscillation of E-region of the ionospheric resonator.
Wave is of electromagnetic origin and can exist in the presence of latitudinal gradient of the equilibrium

geomagnetic field. It is seen that at /8 ~|,|, the first branch &> =k,V, and for second branch we get

k
af?) =k Vo —ke|Cy |~ l:f (14)

In case long wave-length perturbations k? U S /|Cy|, we get from (12) and (13)
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From these expressions we see that depending on the sign of (5 —| B |) , Tast a)(()l) waves can propagate both

westward and eastward virtually without damping, while slow a)éz) waves are propagating only westward and
are damping substantially (but for more large-scale waves the damping can be weak).

In case of relatively short wave-length perturbations k® Ll 3 /[Cy,|, we get

o =y i+ L (pia)) ], A0 =a, (17)
K Ck
and
(2) _p v [Bal 2Bl @) 1Bl
0)0 —kaO kx |:|CH|+ k2 |CH|k4 (ﬁ |ﬁH |) ' ‘7 ‘~k2|CH|AD A. (18)

As before, we see that depending on the sign (ﬂ—|ﬂH |), slow a)él) waves can propagate both westward

and eastward and are damping substantially, while fast a)(()z) waves are propagating only westward without
damping.
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(i) E-region (5 =0).
For F-region of the ionosphere, where the Hall effect is absent(6 =0), from (11) and (10) we obtain following
solutions:

k 12
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In case long wave-length perturbations k? (1 32 /|CH - Py | , we get from (19) and (20)
k.|Cy - B Cy B k2|Cy, B
oD =KV + «|Cx H||:1_| H / H|k2}’ ‘y(l)‘zm/l[ A, (21)
and
2 B |CH ’ﬁH| k2|CH '/BH| 2 ﬁz
o =k —ky | Lot 1- . ,M >‘z2—/m A. (22)
k B it 4k“Cy By

From these expressions we see that  fast a)(()l) waves can propagate only eastward virtually without

damping, while slow a)(()z) waves are propagating only westward and are damping substantially.

In case of relatively short wave-length perturbations k? I 2 /|CH - Py | , We get
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We see that «f") waves can propagate only eastward, while «{?) waves are propagating only westward.
These waves are weakly damping.

The wave branches (15) and (18) represent the dispersion relations for fast EM planetary waves stipulated
by Hall conductivity (6 =1) and the permanently acting factors in the E-region of the ionosphere —latitudinal
gradient of the geomagnetic field and angular velocity of the Earth’s rotation. The wave branches (21), (23) and
(24) represent also fast EM planetary waves caused by the global factors, acting permanently in the F-region of
the ionosphere —inhomogeneity of the geomagnetic field and angular velocity of the Earth’s rotation. As to the
wave branches (16), (17) and (22), they are of slow magnetized Rossby (MR)-type. In the dispersion of the slow
waves (16), (17) and (22) along with the latitudinal gradient of the Earth’s angular velocity latitudinal gradient
of the geomagnetic field plays the important role, which reduces the phase velocity. The same for the fast waves
(15), (18), (21), (23) and (24) —non-uniform nature of the angular velocity of the Earth rotation stipulates the
mutual coupling of the fast and slow waves, which causes intensification of the dispersion of the fast waves.
Without such couplings, for example, the fast waves (15), (23) and (24) become non-dispersive.

4. Non-modal analysis of the linear evolution of disturbances
In deriving dispersion relations (8)-(11), we used a local approximation; i.e., we assumed that the quantities

V, andVO" are locally uniform (as well as g, fy andCy, as is usually done in the g -plane approximation)

and expanded the physical quantities in Fourier integrals. The applicability of the local approximation to
nonuniform medium and sheared flows is limited (Mikhailovskii, 1974). The results obtained by using this
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approximation are valid only for the initial stage of the evolution of perturbations. In particular, when the
background flow is spatially nonuniform in the meridional direction, applying the Fourier expansion in the y
coordinate is unjustified. According to (Reddy et al. 1993; Trefenthen et al. 1993; Chagelishvili et al, 1996;
Aburjania et al. 2006), a more adequate approach to investigating the evolution of wave perturbations in sheared
flows in the linear stage is provided by a nonmodal (rather than modal, i.e., direct Fourier expansion)
mathematical analysis.
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Fig. 1. Evolution of the non-dimensional energy density E(t) (formulae
(45) ) to the initial parameters: |B,[=0.1, B =0.06, k, =0.01,

k,(0)=01, S$=01, C, =1

Therefore, for adequate description of the dynamics of ULF waves interaction with inhomogeneous
ionospheric winds on the basis of dynamical equations (1), (2), the non-modal mathematical analysis will be
used below, which accounts non self-adjointness of the operators in this equations and non-orthogonality of the
corresponding eigen-functions (Aburjania et al. 2006).

In this section, for definiteness, we choose the velocity profile of the sheared flow (nonuniform wind) to
have the simplest formV,(y)=A-y, where A>0 is the constant parameter of the wind shear, which we take
to be positive and independent of y. The non-modal approach begins with a transformation to the convective

coordinates X, =X—Vo(y)t, y; =V, t; =t, that are the coordinates in the local rest frame of the mean flow.
In our problem, this is equivalent to the following change of variables:
X =Xx—Ayt, yp=y, =t (25)

or

0.0 p0 0_ 0 0_0 , 0 (26)
oty o x ox 8y oy 28

In terms of the new variables, Egs. (1) and (2) read

2 2 2 ?
A || ox= \y 2] Xy 2 x° (o 2
0 oy oh
—h-p—"=+C, —=0, 238
B P T )

The coefficients of the initial set of linear equations (1) and (2) depend on the spatial coordinate y. Having
made the above charge of variables, we switch from this spatial nonuniformity Egs. (1) and (2) to the temporal
nonuniformity in Egs.(27) and (28).

Hence, we have reduced the boundary-value problem to the Cauchy problem. Since the coefficients of Egs.
(8) and (9) are now independent of the spatial coordinates x; and y; , we can apply the Fourier expansions in the
spatial variables x;, and y; to the equations, without using any local approximations and can independently
consider the time evolution of the SFHs:
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(X,y1.t) Ky Ky 4
{ " 1} HI ky, dk,, ( 0k ) xexp(iky, X, +iky 2, ). (29)
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Here, quantities with tilde (e.g., ]) denote the SFHs of the corresponding physical quantities.

We substitute representation (29) into Egs. (27) and (28), omit the tilde from the Fourier harmonics of the
physical quantities, and switch to the dimensionless variables

=l ; (Xy):>(ly1), vt ho
@R )
5= 2 key = ki y Ri K, =k, (0) =k Sz k*(7)=k{ +KZ(7);
2]
vos A gl oy =S ooiP(ow(e); (30)
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As a result, for each SFH of the perturbed quantities, in the non-dissipative case(v =0), we obtain the
equations

D D .
— _ pk,———ik Cyh=
ﬂ sz(‘r) ! xCH 0, (31)
oh .
——ik +ik,Cyh=0. 32
a7 ﬁ ( ) H (32)

The closed set of Egs. (31) and (32) describes the linear interaction of a ULF PEW with a sheared flow and the
evolution of the related perturbations in an ionospheric medium. After the above manipulations, the wave vector

of the perturbations, k (kyk,(t)) becomes time-dependent,k, (z)=k,(0)—kS-7;k*(z)=(k; +k;(7)), that
is, the wave vector is subject to a linear drift in wave-number space. Because of the time variation of the wave
vector (i.e., the separation of the perturbation scales in the linear stage), the interaction even between the

perturbations that occur initially on very different characteristic scales is highly pronounced (Aburjania et al .
2006).

4.

Fig. 2. Relief and level lines in the rest frame of the vortices ¥(n,y) — Uy,
calculated from formula (55) for =1, k=1, =, =05 (the
longitudinal vortex street).

In wave number space, the total dimensionless energy density E of the wave perturbations, SFHs of which
are determined by Eqgs. (31) and (32), has the form

h 2
EK(7)] =%[|d)(r)|2 N (krz)| ] (33)

0

Correspondingly, from Eq. (4) we can see that, in the presence of a zonal flow with the velocityV,(y), the
energy density of the SFHs evolves according to law
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dE(z) _\, 0w oy _
=V o SV, (7 )V, (7). (34)

In the absence of a sheared flow (S=0), the total energy density of the wave perturbations in the
ionosphere is conserved, d £(z)/dz =0.

Let us now turn to Eq. (34) to find out what is the result of the evolution of the energy of a wave
perturbation: is it an increase or a decrease in its energy? To do this, we must calculate the right-hand side of
Eq. (34), a task that requires solving Egs. (31) and (32). In this way, differentiating Eq. (31) with respect to time
and using Eq. (32), we arrive at the following second-order equation for the generalized stream

function® = k(7 )y(7):

2
—‘(’jT‘f+P1(r)—‘(’jf+P2(r)a>=o, (35)
where
: k2 . ky(7) .
Pl(z')zlkx(CH —ﬁJ PZ(T):kz(T)[CHﬁ —2iS kﬁ(r)ﬂ} B =B+py.  (36)

Equation (35) can be simplified by introducing a new variable (Magnus 1976). Setting

D=Y exp[-(l/ 2)jPl(r')dr'], (37)
we can transform Eq. (35) to the equation of a linear oscillator with time-dependent parameters
Y +Q%(r)Y =0. (38)
Here, the prime denotes the derivative with respect to time and
;d2y 1. 1
=17 2O=R()-JRE)-FR()~
22 2 2 K (7
.z N RS, . o g( ) 5], (39)
4 k“(7)Cq k“(7) k“(7)

We solve Eq. (38) in the adiabatic approximation (Zel'dovich and Myshkis, 1973) by assuming that the quantity
(1) varies adiabatically with time:

[2(7)| << ‘_(22( r )\ . (40)
Under this assumption, homogeneous equation (38) can be solved approximately. For a flow with S <<1,
condition (40) is satisfied for a wide range of wave numbers, ‘ky(r) = ky(O)—kXSr‘ . In other words, when the
time variation of ‘ky(r)‘ is due to the linear drift of the wave vector in wave number space, condition (40) is

valid throughout the entire evolution of the SFHs. The approximate solution to Eq. (38) can then be represented
as

C .T

Y = exp| —1|.Q2(z'dz' |, 41
20 r{ { (z'd } (41)
where C =const. Substituting representation (41) into formulas (37) and (30), we can construct the solutions to
Egs. (31) and (32):

D(7) _

C .
W(T)_kz(‘[‘)_kz(r)mexp[—l¢(r)]’ (42)
__K(ow(o) Ch i
h(r)= o [Q(T)Jr > 1+k2(r)CH , (43)

Here, with allowance for the obvious inequality |CH | >> ‘ﬁ' / kz(r)‘ , We assume that
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X
Inserting formulas (42)-(44) into expression (33) and taking into account the inequalities k? = 472 x107° <<1,

|ﬁH | >p, >0, py <0, C <0, we arrive at the following expression for the normalized energy density of the
Fourier harmonics:

616 1-18| ‘
ka +(ky(0)—3er)1cH

E(7)~1+ : (49)

In the initial evolutionary stage such that k,(0)/k, >0 (when k,(z)>0), the denominator in expression

(45) decreases with time 7, O<zr<7" = ky(0)/(Sk,)=100 and, accordingly, the energy density of the SFHs
increases monotonically and reaches its maximum (which is several times higher than its initial value) at
r=7"=100. On longer time scales,z* <7 <o, the energy density decreases (when ky(z)<0) and

monotonically approaches a value approximately equal to the initial density. In other words, in the initial
evolutionary stage, when k,(z)>0 and the SFHs of the perturbations are in the amplification range in wave

number space, the perturbations temporarily extract energy from the sheared flow to increase their amplitude
several times on the time interval 0< 7 < 7" = ky(0)/(Sky); in the subsequent stage, when ky(z)<0, and the
SFHs of the perturbations are in the damping range in wave number space, the perturbations return the energy

back to the sheared flow on time scales z* < < oo (Figure 1), provided that nonlinear processes have not come
into play and no self-organization of the wave structures has occurred prior to this stage. In a medium with a
sheared flow, such an energy transient redistribution is caused by the fact that the wave vectors of the
perturbations become time-dependent, k =k(z); that is, the scales of the perturbations are partitioned and the

structures occurring on comparable scales efficiently interact with each other, thereby sharing the free energy of
the system among themselves.

So, within a time interval 7 <z* EM ULF wave disturbances redistribute the mean shear flow energy —
draw energy from the main flow (the shear energy) and significantly grow (by several orders).

5. Shear flow driven nonlinear solitary vortex structures

It was shown in previous section, at the zonal flow velocity inhomogeneity, at interaction with the wind the
EULF wave perturbations can sufficiently increase own amplitude and energy and in their dynamics the
nonlinear effects will be appeared. As a rule, considering nonlinearity, steepness of the wave front increase
leading to its breaking or formation of shock wave. However, as it is well known, shock waves do not arise
spontaneously in the ionosphere. This indicates that in the real ionosphere for the planetary-scale motions when
dissipative forces can be neglected, nonlinear effects of the medium must be essential (Aburjania et al. 2003,
2007). As a result, before breaking the wave must disintegrate either into separate nonlinear waves or into the
vortex formations. If nonlinear increase of steepness of wave front will be exactly compensated by dispersion
spreading, then stationary vortex structures will appear in the ionosphere. The more so, as experimental data and
observations show (Bengtsson and Lighthill, 1982; Cmyrev et al, 1991; Petviashvili and Pokhotelov, 1992;
Nezlin, 1994; Aburjania, 2006) that the nonlinear solitary vortex structures may exist in the different layers of
Earth’s atmosphere. Thus, the shear flow energy accumulation in the ionospheric disturbances may be results in
the formation of nonlinear vortex structures. So, the ionosphere medium with sheared flow creates a favorable
condition for formation of the nonlinear stationary solitary wave structures.

5.1. The stationary vortex streets in the nondissipative ionosphere
Vortex streets of various shapes can be generated in conventional liquid and plasma media with a sheared flow
as a result of the nonlinear saturation of the Kelvin-Helmholtz instability (Gossard and Hooke, 1975; Kamide
and Chian, 2007).

Thus, we will seek the solution of the nonlinear dynamic equations (1), (2) (in nondissipative stage,
when A =0) in the form w =y (7n,y), h=h(7n,y), where n=x-Urz, i.e. the stationary solitary structures,
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propagating along x-axis (along the parallels) with velocity U =const without changing its’ shape. In
accordance to Aburjania and Chargazia (2007), system of equation (1), (2) has the solution

)= g (46)
. ' y
Ay o (1)~ L2y -y - [u(y)ay-Uy) @
H

with F(&) being an arbitrary function of its argument and 4=6%/8n%+6%/ dy? Vortex streets have

complicated topology and can occur when the function F(&) in Eqg. (47) is nonlinear (Petviashvili and
Pokhotelov, 1992, Aburjania, 2006).
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Figure 3. The level lines and relief of the stream function of vortex solution (55) in the
moving system of coordinates to the parameters: a).y) =1, U=0.1, &, =0.2, «=0.5;

b) \nglu U:O.ll %020.21 K:]-l C) \Vg:l! U=011 $0=0.2; KZO.S; d) \|lg=1;
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In (47) we assume that a nonlinear structure propagates with the velocity U satisfying the condition

U ='%CH . (48)

For this case, choosing Fto be a nonlinear function, F(§)=y/81<2(exp(—2§/y/8) (Petviashvili and
Pokhotelov, 1992; Aburjania, 2006), we can reduce Eq. (47) to

A(wo —Uy) =pok” exp| ~2(yo ~Uy) /w5 | - (49)
Then we introduce the new stream function
Po(1,Y)=DPo(Y)+wo(XY), (50)
and the velocity potential @, (y) of the background sheared zonal flow,
do
Vo(y)= 220, (51)
y
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The stream function of the background sheared flow @,( y ) can be chosen to have the form

@y(y) =y +ys5 In(e oy). (52)
Here, y/8 is the amplitude of the vortex structure, 27/ x kappa is its characteristic size, and 2z / &, is the

nonuniformity parameter of the background sheared flow.
Taking into account formula (50) and using stream function (52), we can write vortex equation (49) as

0,2 K y§
Ay =yo 5| —e 0 -1]. (53)
®o
This equation has the solution (Mallier and Maslowe, 1993)
ch(xy)+y1-a5 cos(xn)
wo(my)=wgIn . , (54)

ch(a,y)

which describes a street of oppositely circulating vortices. Substituting solution (54) and stream function (52)
into formula (50), we arrive at the final solution

o(1,y) =Uy + 8 In[ch(xy )+ /183 cos(xn)] . (55)
Formulas (54), (52), and (51) yield the following expressions for the velocity components of the medium
and sheared flow:

h(xy)
Ve(7,Y)=U +48 > , (56)
§ %Kch(/cy)ﬂ/l—aeg cos(x7)

«/1—ae§ sin(x7) 57)

Vy(7.y) = oK ,
! ch(xy)++1-a3 cos(x7)

Vo(y)=U +ypge oth(ayy). (58)

For &, =1, solution (56) describes a background flow of the type of sheared zonal flow with velocity (58).

For aeé <1, a street of cyclonic-type vortices forms in the middle of the zonal flow with velocity (58) (Figure

2). A solution like that described by formulas (56) and (57), with closed current lines in the form of cat's eyes,
was for the first time obtained by Kelvin.

The vortex structures move with velocity (48). If we take into account that g <0, B =p —| Bu |< 0 as far
as|,BH | >p>0,Cy <0 from expression (48) followsU >0. For E-region the characteristic parameters
N/N, =5x107, @y =eH,/(Mc)010° s, R=64x10°m, 202, =10*rad -s™, we get that
B =20sin6, | RO 0.8x10 " m™ s, |Cy|~10km-s7t, |By|=(N/(N,R))2ysing, ~4x10*ms™t,
Thus, the vortices move with velocity U ~4|C; |>|Cy| along the parallels to the east. Therefore, this velocity

is greater than the phase one of the corresponding linear periodic wavesU > |CH | ~10 km-s™*. So, the vortices

don’t come into resonance with the linear waves and don’t loose energy on their excitation (Stepanyants and
Fabrikant 1992).

For estimation of the linear scale of the vortex structures let’s remember the general formal relation between
the dispersion equation of the linear waves and with so-called modified dispersion equation of the nonlinear
structures (Petviashvili and Pokhotelov, 1992; Aburjania, 2006). This is coupling of the phase velocity of linear

wave V, = o I k with motion velocity of the nonlinear structures U — @/ k —U ; relation of the wave vector k

of the linear disturbances with the characteristic linear scale of the vortexd : — k —d*. Taking into account
this fact for characteristic scale of the fast vortex structures from (14) we get:

1/2
df = M] . 59
[ﬁ (59)

And for the slow Rossby type vortex structures from the equations (16), (17) we get:
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1/2
U
ds =| = . 60
[ﬂj ©

Substituting in these expressions the typical for the Earth’s ionosphere numerical vaIues|CH |z 10 km s,
B~10""m 1571 we find for fast structures d " ~10*km . For slow Rossby-type vortices U ~10 m s tand we
can obtain d° ~10%km.
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Figure 4. The level lines and relief of the stream function of vortex solution (55) in the
moving system of coordinates to the parameters: a).yJ =1, U=0.1, &,=0.5, x=1; b).

v =1, U=01, & =05, k=1;C). yJ =1, U=0.1, &, =09, k=1;d). yJ =1, U=01,
&, =09, k=1,
For magnetic field perturbation from (46) and (55), we can obtain the following estimation:
Ih|~|By|-d, (61)
valid for both the fast and slow modes. For the ionospheric conditions |8y |~ 4x10™"m™s™, thus using the
estimations to carried out above, we my conclude that fast vortical motion generate magnetic pulsations

hf ~107*T, while in case slow Rossby-type vortical motions —h® ~107°T .

Note that nonlinear stationary equation (47) also has an analytic solution in the form of a Larichev-Reznik
cyclone-anticyclone dipole pair and other class of solitary solutions by different profiles of background shear
flows (Petviashvili and Pokhotelov, 1992; Jovanovich et al. 2002; Aburjania, 2006; Aburjania et al. 2003; 2004;
2007).

5.2. Attenuation of the vortex streets in the dissipative ionosphere
In the dissipative approximation (A =0), we switch to the above self-similar variables (7 and y) and take into
account the relationshipo / 0z =-Ud/ dn, which then holds. As a result, we can write Egs. (1) and (2) as
—UiAY’+ﬁ—+CH@+AAy/ J(¥,4%)=0, (62)
on on on
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(Cy —U)%—ﬂHaa—:—a(w,hho. (63)

Equation (63) has the solution

Bu
h(n,y)=—""—%. 64
(m.y) C—U (64)
Substituting solution (64) into Eq. (62), take into account the expression (48) and rearranging the term, we
arrive at a single nonlinear equation:

A
[DUJFUJASU:O’ (65)
where
0 1(o¥w o oW o
D,=—+— ——-——1.
T on Ul onoy oy on

The equation (65) yield a solution as
Y=Y, - exp(—%nj . (66)

Here the zero™ order ¥, is identified with solution (55) (Figure 2). The incorporation of dissipation effects has

modified the solution of the dynamical non-linear differential equation. It can be seen from (66) that friction (or
collision) is responsible for exponential decay of stationary nonlinear vortex structures in space. This street of
vortices can be studied by plotting the stream line function ¥(n,y)(Egs. (66) and (55)). We have free

parameters ‘I’g x anda,, and the velocity of movement of the structures U will be determine by (48).

a — b

20 <10 0 10 20 20 -10 0 10 20

Figure 5. The level lines and relief of the stream function of vortex solution (55) in the
moving system of coordinates to the parameters: a).y? =1, U=06, ®,=0.2, k=0.5;

b). yy =1, U=15, & =02, k=05;C). yj=1, U=5, &, =02, k=05; d). yj =1,
U=10, #,=0.2, k=05;
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Figure3a shows the x=0.5 case and Yfg =1, U=0.1, &, =0.2, while Figure 3c shows the x=1 case.
Three dimensional plots for the same parameters are shown in Figure 3b and 3d. At decrease of the linear scales
of the vortices (with increase of x ) the number of the vortices will increase in the given area of the medium and
their amplitudes will decrease (Figure 3c, 3d).The reduction in x causes a reduction in number of vortices, e.g.,
the x=1stream function plots six vortices (Figure 3c, 3d). We, therefore, note that the number of vortices
increases with increasing «, e.g. the formation of nonlinear structures is attributed to low frequency mode.

At decrease of the linear scale of the background wind inhomogeneity (increasinge,) the linear scales,

amplitudes and steepness of peaks of the vortices decrease accordingly (Figure 4).
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Figure 6. Spatial damping of the vortex structures (the level lines and relief of
the stream function), calculated from formula (66) to the parameters: a).y$ =1,

U=01, &,=0.2, k=03, A=0.0000; b). yj =1, U=0.1, &,=0.2, k=03, A=0.0025;
). wo =1, U=01, &, =02, k=03, A=0.0100;

The street of vortices is in almost stationary frame of reference, it disappears for higher frame velocity
(U>1), i.e. the contribution of logarithmic and hyperbolic trigonometric functions are no longer overcome by
the contribution of linear term viz. Uy in (55) and, therefore, vortex formation is replaced by straight stream
lines (Figure5). Due to increase of the translation velocity (U ) of the structures and the background flows the
scales and amplitudes of the generated vortices will decrease. In case of comparably high velocity background
wind (U >1) the vortex will not be generated at all and only the background flow will remain in the medium
(Figure 5). Further, due to the nonlinear term, the velocity of dispersive waves must be greater than the phase
velocity of a wave which resulted in a bending of the wave front and hence vortices start to form.

The street of vortex disappears in the space for high dissipation rate A (or collision frequency) (Figure 6).
We credence that the dissipation effect has not permitted the vortex formation, but the topography of stream line
function has been modified (Figure 6).
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5.3. Relaxation of the vortex structures in the ionosphere
The real mechanism of dissipation in the atmosphere against the background of baroclinic, nonlinear and
dispersive effects generates in the ionosphere moving spatial structures representing the equilibrium stationary
solutions (54) and (55) of the governing magneto-hydrodynamic equations (1) and (2). For qualitative
estimation of the evolution and the temporal relaxation of stationary vortex structures in the ionosphere, built in
previous paragraphs, the dynamic equations (1) and (2) can be approximately written as the following
Helmholtz’s vortex transfer equation:

%VXV:P—A(VXV), (67)

which describes the generation of nonzero vorticity VxV ((VxV ), = A¥) in the ionosphere under the action

baroclinic vector P (source function) taking in to account the temperature contrasts in the form of advection of
warm and cold, medium dispersion and influence of small nonlinearity. According to the observations (Gill,
1982; Pedlosky, 1982), vector P for low-frequency disturbances is a slowly varying function of time. In this

case the vortex Eq. (67), with the initial conditions of CauchyV ><V|t=0=0 (at the initial moment in the
atmosphere there no vortices) has the bounded solution:

VxV =;(1—e/“). (68)

AP (t)

0 5 10 15 20
t

Figure 7. Relaxation of the vorticity of perturbations, calculated from formula (68) to
the parameters: a). A =0.8, P/A=10; b). A=0.2, P/A=10.

Dissipative effects have an accumulative nature and its action becomes perceptible only after a certain
interval. From Eq. (68) it follow that vorticity will increase linearly with time only at small time intervals
(t<<1/ A) under the action of baroclinicity and some other effects. After a certain time, when the dissipation
effect reaches a specific value, vortex growth speed decreases (the vorticity growth rate decreases) and for the
large intervals of time (t>>1/ A) it tends to constant (equilibrium) value P/ A (Figure 7).The value of

dimensional time T =1/ 4~10°s>24hour can be called a relaxation time of non-stationary vortex street.
Indeed, for the lower atmosphere relaxation time is of the order of twenty-four hours (Gossard and Hooke,
1975; Pedlosky, 1982) and consequently here large scale vortices must be long-lived. Stationary solution
describes the equilibrium between baroclinicity and the dissipation effects (P = A(VxV)). As a result, the

dissipative structure is generated in the ionosphere in the form of stationary street of cyclones and anticyclones.

6. Conclusions

Thus, in the present article we have obtained the simplified system of nonlinear dynamical equations describing
linear and nonlinear interaction of planetary electromagnetic ultra-low-frequency fast and slow wavy structures
with zonal shear flow in the Earth’s dissipative ionosphere. Along with the prevalent effect of Hall conductivity
for such waves, the latitudinal inhomogeneity of both the angular velocity of the Earth’s rotation and the
geomagnetic field becomes essential. Due to spatial inhomogeneity of the Earth’s rotation velocity fast and slow
waves can be coupled. Such coupling results in an appearance of strong dispersion of these waves. Note that,
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without this coupling the fast branches in the both ionospheric E and F-regions lose the dispersion property for
both large and short wave-length perturbations.

Effective linear mechanisms are revealed, which account the transient pumping of shear flow energy into
wave disturbance energy, an extreme intensification (by several orders) of wavy processes, self-organization of
generated wavy disturbances into the nonlinear solitary vortex structures, dissipation relaxation of vortices and
finally the conversion of perturbation energy to heat. A remarkable feature of the sheared flow is a reduction in
the scales of wave perturbations in the linear regime due to the variation of the wave vector of the perturbations
with time k =k(z) and also due to the linear drift of the SFHs of the perturbations in wave number space and,

accordingly, the energy transfer into small scales, i.e., into the dissipative region. The Linear intensification of
EM ULF wave may take place temporarily, for certain values of the parameters of the medium, shear and
waves. This makes an unusual way of shear flow heating in the ionosphere: waves draw up the shear flow
energy and pump it through the linear drift of spatial Fourier-harmonics (SFH) in the space of wave numbers
(subdivision of disturbance scales) to the damping domain. Finally, the friction, viscosity and inductive damping
may convert this pumped energy to heat. The process is permanent and may lead to a strong heating of the
medium. The heating intensity depends on the initial disturbance level and shear flow parameters.

The generation of the slow electromagnetic linear waves in the ionospheric E-region by the gradient of both
geomagnetic field’s, angular velocities of the Earth’s rotation and inhomogeneous zonal wind was shown. Slow
wave propagate in E-region along the latitudinal circles westward and eastward against a background of mean
zonal wind and are the waves of Rossby type. The frequency of the slow waves vary in the diapason of

(10 +107%)s™; period of these waves vary in the range from 2 hour to 14 day; wavelength is about 10° km
and longer, the phase velocity has the same order as the local winds’ do from a few to hundred of m-s™
(V;’ ~(1+100) m-s™). The slow waves experience the strong attenuate by Rayleigh friction between the
layers of the local atmosphere and the damping factor is |7 |= 40107 s™. Though the attenuation would be
weaker for longer large-scale waves with wavelength of about 10% km and the timescale of a week or longer.
The linear slow waves perturb the magnetic field, which has the order of h® z‘47reNVS§

/c (& - transversal

shift of the charged particles). For the value of the phase velocity Vrf =50m-s~* and £=1 km, we have h® ~1
nT. Perturbed magnetic field strength increases up to 20 nT, if transversal displacement of the system & =10 km

and the phase velocity Vs ~10%> m-s™*. Thus, the linear slow electromagnetic waves in the dynamo-region are

accompanied by the noticeable micro-pulses of the geomagnetic field and have the same order as the micro-
pulses caused by S, currents in the same region. The slow waves are generated by the dynamo electric field

Eq =V xH, /c. These waves, on seen, were observed in the experiments (Cavalieri et al. 1974; Manson et al.
1981; Sharadze et al. 1989; Zhou et al. 1997).

Generation of the linear fast planetary electromagnetic waves in the ionospheric E-region by the gradient of
geomagnetic field, the Hall’s effect and inhomogeneous zonal wind was established. These waves propagate
along the latitude against a background of the zonal-mean flow westward and eastward at the speed of a few

km-s™ (fo z(1+7)km-s‘1) in the dynamo-region. The waves have the frequency of order of

(1071 +107*)s™; the periods are in the interval from 4 minutes to 6 hours; wavelength of about 10° km and

—7 s—l

longer. They attenuate weakly and |yf |~0.014~10 . The essential micro-pulses of the geomagnetic field

caused by the fast waves equal to hf z‘ZeNCH/lf ‘ / c~10°nT. They could be assumed as a new mode of the

own oscillations in E-region of ionosphere. Frequencies and phase speeds of fast waves depend on density of
the charged particles. Therefore, the phase velocities of fast disturbances in E-region of the ionosphere differ
almost by one order of magnitude for daytime and nighttime conditions. High phase velocities, as well as their
strong change between day and night preclude the identification of these disturbances with MHD waves. The
fast waves are caused by oscillations of the electrons, completely frozen-in the geomagnetic field and are
generated by the vortex electric field E, =VpxH, /c. These waves were observed in the experiments
(Al’perovich et al. 1982; Sharadze et al, 1988; Burmaka et al, 2004; Georgieva et al, 2005).

It is established, that in the ionospheric F-region inhomogeneity of the geomagnetic field and
inhomogeneous zonal wind generates fast planetary electromagnetic wave, propagating along the latitude circles

to the east or to the west with phase velocity fo ~(5+50) km s™. Frequency of waves is in limits
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(10-10"%)s*and the waves are weakly damped with decrement‘;/f ‘ ~10%s71. The period of perturbations

varies in a range (1+110) s. Amplitude of geomagnetic micro pulsations, generated by these waves, is about

h' ~10®nT. These waves are new modes of eigen oscillations of F-region of the ionosphere. Such waves as
magneto-ionospheric wave perturbations have been found out in experiments (Sharadze et al 1988, Sorokin
1988, Bauer et al 1995, Burmaka et al 2004, Georgieva et al 2005, Fagundas et al 2005).

The frequencies of the investigated waves vary in the band o~ (10- 10°°) s*and occupy both infrasound and
ULF bands. Wavelength is A~ (10° -10%) km, period of oscillation isT ~ 1 s—14 days. The electromagnetic

perturbations from this band are biological active (Kopitenko et al. 1995). Namely, they can play an important
role as a trigger mechanism of the pathological complications in people having the tendency to hyper tensional
and other diseases. Thus, these waves deserve great attention, as they are to be the significant source of the
electromagnetic pollution of environment.

It is show, that at interaction with the inhomogeneous local wind the EM ULF wave perturbations can
sufficiently increase own amplitude and energy and in their dynamics the nonlinear effects will be appeared.
Dynamical competition of the nonlinear and the dispersion effects at the different layers of the ionosphere
creates a favorable condition for self-organization of the EM ULF disturbances into nonlinear vortex structures.
The self-localization of the planetary ULF waves into the long-lived solitary vortex streets in the non-dissipative
ionosphere is proved in the basis of the analytical solution of the governed nonlinear dynamic equations. The
exact stationary solution of these nonlinear equations has an asymptote y ~ exp(—«r) at r — o, so the wave is

strongly localized along the Earth surface. The translation velocity U of ULF EM vortices is very crucial which
in turn depends on parameters $ and S, . From analytical calculation and plots we note that the formation of

stationary nonlinear vortex street require some threshold value of translation velocity U (48) for both
nondissipation and dissipation complex ionospheric plasma. For some large value of the background wind’s
spreading velocity (U >10) the vortex structures may not be raised at all and only the background wind will be
preserved in the medium (Figure 5). Number of vortices in generated nonlinear structures and a value of
amplitudes of these vortices essentially depend on the size of the background wind’s inhomogeneity —
decreasing the latter — generated vortex’s size and amplitude will automatically decrease (Figure 4). It’s shown
that the space and time attenuation can’t resist the formation of the vortex structures, but affect the topographic
features of the structures (Figure 6, Figure 7). The generated nonlinear vortex structures are enough long-live (>
24 hour) in dissipative ionosphere.

Depending on the type of velocity profile of the zonal shear flow (wind), the generated nonlinear long-lived
vortex structures maybe represent monopole solitary anticyclone or cyclone, the cyclone — anticyclone pair,
connected in a certain manner and/or the pure dipole cyclone — anticyclone structure of equal intensity, and/or
the vortex street, or the vortex chains, rotating in the opposite direction and moving along the latitudinal circles
(along the parallels) against a background of the mean zonal wind (see also - (Jovanovich et al. 2002, Aburjania
et al. 2003; 2006; 2007)).

The nonlinear large-scale vortices generate the stronger pulses of the geomagnetic field than the

corresponding linear waves. Thus, the fast vortices generate the magnetic field hf ~10° nT, and the slow

vortices form magnetic field h® ~10* nT . The formation of such intensive perturbations could be related to the

specific properties of the considering low frequency planetary structures. Indeed, they trap the environmental
particles, and the charged particles in E- and F-regions of the ionosphere are completely or partially frozen into
the geomagnetic field. That’s why, the formation of these structures indicates at the significant densification of
the magnetic force lines and, respectively, the intensification of the disturbances of the geomagnetic field in
their location. Since, the number of the capture parcels is the order of the passed-by (transient), the perturbation
of the magnetic field in the stronger faster vortices would be the same order as of the background field. On the

earth surface located R, ((~ (1+3)-10° km) below the region of the researching wave structure, the level of the
geomagnetic pulses would be less by exp(—R,/4,) factor. A, is the characteristic length of the

electromagnetic perturbations. Since A, ~(10+10%)R, >> R, the magnetic effect on the earth would be less

then in E- and F-regions, but in spite of this they are easily registered too.
We have defined the velocity diapason of propagation for vortical structures and show that vortices move
faster than the corresponding linear waves. This means that if the source (for example, the above mentioned

nonlinear vortex structure) moves along parallels at a velocity greater than Vg‘ax , the source does not come in
resonance with the corresponding linear waves. Nonlinear vortices moving faster than the corresponding linear
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waves can retain their non-linear amplitude, as far as they do not lose energy by radiation of linear waves. It
means, that these sources can not excite a linear wave due to Cherenkov mechanism, and can retain its initial
energy (Stepanyants and Fabrikant, 1992). Thus, these vortex structures can be generated, self-sustained and

propagated with velocity |U| >VF')“""X along the horizontal in any direction.

The motion of medium particles in studied nonlinear vortex structures is characterized by nonzero vorticity
VxV =0, i.e. the particle rotate in vortices. The characteristic velocity of this rotation U is of order of the

vortex velocity U, U, >U . In this case the vortex contains the group of trapped particles (the number of these

particles is approximately the same as the number of transit particles); rotating, these particles move
simultaneously with the vortex structure. Therefore, being long-lived objects, non-linear planetary-scale
electromagnetic vortex structures may play an important role in transporting matter, heat, and energy, and also
in driving the macroturbulence of the ionosphere (Aburjania, 1990; 2011). In particular, the vortex structures
that play the role of “turbulent agents” can be treated as elements of the horizontal macroscopic turbulent
exchanges in global circulation processes in the ionospheric E and F-layers. The coefficient of the horizontal
turbulent exchange can be estimated from the Obukhov-Richardson formula (Monin and Yaglom, 1967):

Ky ~1072d*3m2s™ . Thus, for vortices with dimensions of about d ~10%km at latitudes of about ¢ =50°-55°,

we obtain K; = 3x10°m?s™L. This estimate (which can be regarded as an upper one) shows that, in the global

exchange processes between high and low latitudes, the meridional heat transport from north to south in the
ionospheric E and F-layers should be of macro turbulence nature (recall that, in the ionosphere, the polar
regions are warmer than the equatorial region).

The fast and slow electromagnetic planetary waves are own degree of freedom of the E and F-regions of the
ionosphere. Thus, first of all, the impact on the ionosphere from top or the bottom (magnetic storm, earthquake,
artificial explosions and so on) induces (or intensify) the wave structures of these modes (Aburjania and
Machabeli, 1998). At the certain strength of the source, the nonlinear solitary vortices would be generated
(Aburjania, 1996), which is proved by the observations (Bengtsson and Lighthill, 1982; Chmyrev et al. 1991,
Nezlin, 1999; Shaefer et al. 1999).

Hence, inhomogeneity of the Earth’s rotation along the meridian, geomagnetic field and zonal prevailing
flow (wind) can be considered among the real sources generating planetary ULF waves and vortex structures of
an electromagnetic nature in the ionosphere. Such nonlinear structures can arise permanently and finally may
constitute the strong vortical (or structural) turbulence in the medium (Aburjania, 1990; 2011; Aburjania et al .
2009).
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YITpaHu3K04acTOTHBIE 3JIeKTPOMATrHUTHBIE NOTr01ao0pasylonue
CTPYKTYPbI B HOHOC(hepe cO CIBUTOBbIM TeUeHUEM

Ouaer Xapmmianse, Xaryna Yaprasua

AOcTpaKT

PaGora mnocBslleHa M3y4eHMIO TPAH3UEHTHOIO HAapacTaHWs M JalbHeWlleld JMHEHHOW u
HEJIMHENHON TuHaMuKe yinbTpaHu3kodacToTHbIX (YHY) mnanerapHbIX anekTpoMarHuTHbIX (OM) BoH
B JMCCHUIIATHBHOM Bpalaromeics HoHocdepe B NMPHUCYTCTBUU HEOAHOPOIHOTO 30HAJIBHOTO BETpa
(coBuroBoro teuenus). Ilmanerapusie OM YHY BonHBI TreHepupyIOTCA IIpH B3alMOZAEHCTBUU

noHOCGhEPHOI Cpeibl C IPACTPAHCTBEHHO HEOJHOPOJHBIM I'€OMarHUTHBIM II0JIeM. AHAaJIU3UpyeTcs
3G GEeKTUBHBINA JTUHEHHBIH MEXaHU3M I'€HEpalud U YCWIEHHUS IIaHeTapHbIX DM BOJH B CIIBUIOBBIX
teyeHusix. [lokazaHo, 4TO 3T BOJHBI A(P(EKTUBHO YEpPHAIOT SHEPTHI0 CIBUIOBOTO TEYCHHS W
CYIIECTBEHHO YBEIMYUBAIOT CBOIO AaMIUIUTYAy M DSHEpruro Mmo anredpaifueckomy 3akoHy. C
YBEJIMYEHUEM aMIUIUTY 16l BO3MYIIIEHUI BKIIFOYAETCS HEJIMHEWHBIA MEXaHU3M CaMOJIOKAIN3aluH U 3TH
BO3MYILEHUS CaMOOPTaHMU3YIOTCA B BHJAE CUIbHOJNOKaIM30BaHHBIX YHY OM  HenuHenHbIX
YEIMHEHHBIX BHUXPEBBIX CTPYKTYp, OOYCIIOBICHHBIX HEJIWHEBIHBIM YKPYYEHHEM INPOPHIIsL
BO3MylIeHHsA. B 3aBucumocTH 0T BHAa NpoduiIsi CKOPOCTH CABUIOBOIO TEUYEHUs HEIMHEHHbIE
CTPYKTYpbl MOTYT OBITh KaK YHCTO MOHOIOJBHBIM BHUXPEM, TaK U BUXPEBOW JOPOKKOW M BUXPEBOU
LeNnoYkod Ha (oHEe HEOAHOPOJHOrO0 30HAJIBHOrO BeTpa. Kak moKa3bplBalOT aHAIUTHYECKHE U
YUCJIEHHBIE HCCIIEe0BaHus, 11 (OPMUPOBAHUS CTAllMOHAPHBIX HEJIMHEHHBIX BUXPEBBIX CTPYKTYpP
HeoOXouMa OIpEeIUICHHOE 3HAYeHHEe CKOpPOCTH IIepeHoca Kak B JHMCCUIIATUBHOM Tak U B
HEe/IMCUTNIATUBHOM HOHOC(hepHO 1azMe. M3yueHa BpeMeHHbIE U TPOCTPAHCTBEHHBIE XapaKTEPUCTHKU
3aTyxaHusi BuUxped. J[aHa OLlEHKa XapakTepHOrO BPEMEHHM 3aTyXaHUs BUXPS B JAUCCUIIATUBHOMN
noHocdepe. JlonroxxkuByume BUYPEBBIE CTPYKTYPbl MEPEHOCAT 3aXBayeHHbIE YacTULM, TEIJIO HU
SHEprut0 B cpene. TakuM o00pa3oM pacCMOTPEHHbIE CTPYKTYpPbl MOTYT OBITh CTPYKTYPHBIMU
anemeHnTamMu Y HU OM makpoTypOyaIyHTHOCTH B HOHOChEpE.
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