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Abstract 
This work is devoted to study of transient growth and further linear and nonlinear dynamics of planetary 

electromagnetic (EM) ultra-low-frequency internal waves (ULFW) in the rotating dissipative ionosphere due to 

non-normal mechanism, stipulated by presence of inhomogeneous zonal wind (shear flow). Planetary EM 

ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous 

geomagnetic field. An effective linear mechanism responsible for the generation and transient intensification of 

large scale EM ULF waves in the shear flow is found. It has been shown that the shear flow driven wave 

perturbations effectively extract energy of the shear flow and temporally algebraic increasing own amplitude 

and energy (by several orders). With amplitude growth the nonlinear mechanism of self-localization is turned 

on and these perturbations undergo self organization in the form of the nonlinear solitary vortex structures due 

to nonlinear twisting of the perturbation’s front. Depending on the features of the velocity profiles of the shear 

flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and 

vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex 

structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex 

ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic 

time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortex structures transfer the 

trapped particles of medium and also energy and heat. Thus the structures under study may represent the ULF 

electromagnetic wave macro turbulence structural element in the ionosphere. 

 

Keywords: ULF electromagnetic wave, Inhomogeneous geomagnetic field, Shear flow, non-modal 

approach, Nonlinear solitary vortex structures. 
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1. Introduction  

In the work presented here, we continue to study a special type of internal waves, which appear in the 

ionosphere under the influence of the spatially inhomogeneous geomagnetic field and the Earth’s rotation 

velocity (Aburjania et al 2002, 2003, 2004, 2007). So, we are interested in large-scale (planetary) ultra-low-

frequency (ULF) electromagnetic (EM) slow and fast wave motions in the ionospheric medium (consisting of 

electrons, ions and neutral particles), which have a horizontal linear scale hL  of order 
310  km and higher, a 

vertical scale vL  of altitude scale order H  ( vL H ). In the mid-latitude E-layer, slow ULF waves have phase 

velocities of 1-100 m/s along the parallels, and period variations from several hours to tens of days, i.e. they 

have the frequencies in the range of (
64 1010   ) s

-1
, as it is obvious from the long-term observations 

(Cavalieri et al. 1974; Manson et al. 1981; Sharadze et al. 1989; Zhou et al. 1997). In contrast to conventional 

planetary Rossby waves, they give rise to a perturbation of the geomagnetic field (a few nanoteslas (nT))   a 
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circumstance that gives evidence of their electromagnetic nature. These waves are generated by the electrostatic 

dynamo electric field of polarization 0 dE V H / c , where 0H  is the strength of the geomagnetic field, V  is 

velocity, c  is light speed. Observations also show, that at temperate and mid-latitudes of the ionospheric E-

region there are large-scale, relatively fast planetary electromagnetic wave perturbations, which propagate along 

the parallels with velocity of order of 2-20 km/s, their periods vary from several  of minutes to a few hours, i.e. 

they have the frequencies in the range of (
1 410 10  ) s

-1
, and an amplitude from hundreds to thousand of nT, 

as it is obvious from the  observations (Al’perovich et al. 1982; Sharadze et al. 1988; Burmaka et al. 2004; 

Georgieva et al. 2005). Fast waves are generated by the latitudinal gradient of the geomagnetic field and the 

Hall effect and represent a variation of the vortical electric field   0 v DE V H / c , where 

0 DV E H
2

0c / H  is an electron drift velocity. The fast waves are caused by the oscillations of electrons, 

completely frozen in the geomagnetic field. The phase velocities of these perturbations differ by magnitude at 

daily and nightly conditions in the E-layer of the ionosphere.  In the mid-latitude F-layer the fast planetary 

electromagnetic wave perturbations propagate east-west along lines of constant latitude with a phase velocity of 

several units-tens of km/s; the periods range from a few seconds to several minutes,  i.e. they have the 

frequencies in the range of (
31 1010  ) s

-1
and accompanied by strong pulsation of the geomagnetic field 

(
320 10  nT), as it is obvious from the observations (Sorokin, 1988; Sharadze et al. 1988; Burmaka et al. 2004; 

Georgieva et al. 2005; Fagundas et al. 2005). The phase velocity of the fast magneto-ionospheric wave 

perturbations in the F-layer does not vary noticeably on the period of a day, but depends on the ionospheric 

ionization levels.  

 These perturbations represent the eigen oscillations of the E and F-regions of the ionosphere and they are 

responsible for ionospheric electromagnetic weather formation. Such forced oscillations are observed at impulse 

action on the ionosphere from above - at magnetic storms (Haykowicz, 1991), from bellow – at seismic activity, 

volcano eruption and anthropogenic activities (Pokhotelov et al. 1995; Shaefer et al. 1999). So, at external 

influences these oscillations will be excited or amplified first in the ionosphere as eigen modes of the 

ionospheric resonator. Thus, these waves may be represented also ionospheric electromagnetic response on 

natural and artificial activities. 

Observations (Gershman, 1975; Gossard and Hooke, 1975; Kamide and Chian, 2007) show also, that 

spatially inhomogeneous zonal winds (shear flows), produced by nonuniform heating of the atmospheric layers 

by solar radiation, permanently exist in the atmosphere and ionosphere layers. Herewith, investigation of the 

problem of generation and evolution of ionospheric EM ULF electromagnetic waves at interaction with the 

inhomogeneous zonal wind (shear flow) becomes important. 

  

        

2. The governing equations  

We choose our model as a two-dimensional  plane with sheared flow. Since the length of planetary waves 

(
310 km ) is comparable with the Earth’s radius R , we investigate such notions in approximation of the 

  plane, which was specially developed for analysis of large-scale processes (Pedlosky, 1978), in the 

“standard” coordinate system. In this system, the x -axis is directed along the parallel to the east, the y -axis 

along the meridian to the north and the z -axis   vertically upwards (the local Cartesian system). For 

simplicity, the equilibrium velocity 0V , geomagnetic field 0H , perturbed magnetic field h  and frequency of 

Earth’s rotation 0  are given by 0 V  0V (y) xe , 0H p(0,0, H cos )  , h (0, 0, )zh , 0 0(0,0, cos )  . 

Here and elsewhere  ( , , )x y ze e e e  denotes a unit vector, 
5

pH 5 10   T is the value of geomagnetic field 

strength in the pole and we suppose that geomagnetic colatitude   coincides with a geographical colatitude  . 
In the ionosphere the large-scale motions are quasi-horizontal (two-dimensional) (Aburjania et al. 2002; 2003; 

2006) and hydrodynamic velocity of the particles V  x, y(V , V ,0) . The fluid is assumed to be incompressible 

and therefore a stream function   can be defined trough V  [ , ]ze . Medium motion is considered near the 

latitude 0 0/ 2    . 

Not considering any more detail in the new under review branches of planetary waves (see Aburjania et al , 

(2002-2004, 2007)) we would like to note that beginning with the altitude of 80 km and higher, the upper 

atmosphere of the Earth is a strongly dissipative medium. Often when modelling large-scale processes for this 

region of the upper atmosphere, effective coefficient of Rayleigh friction between the ionospheric layers is 
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introduced. The role of the ion friction rapidly increases at the altitudes above 120 km (Kelley, 1989, Kamide 

and Chian, 2007) and its analytical expression coincides with the Rayleigh friction formula (Aburjania and 

Chargazia, 2007). Therefore, often during a study of large-scale 
3 4(10 10 ) km, ULF 

6 1(10 10 )s   wavy  

structures in the ionosphere, we will apply the well-known Rayleigh formula to dissipative force  F   V , 

assuming the altitudes above )13080(  km 5 -110  s  (Dickinson, 1969; Gosard and Hooke, 1975), and the 

altitudes above 130 km n/N  inN , where N  and nN denote concentrations of the charged particles and 

neutral particles, in  is frequency of collision of ions with molecules (Gershman, 1974; Kelley, 1989; 

Al’perovich and Fedorov, 2007). 

The governing equations of the considered problem are the closed system of magnetohydrodynamic 

equations of the electrically conducting ionosphere (Gershman, 1974; Kelley, 1989; Aburjania et al. 2004; 2007; 

Al’perovich and Fedorov, 2007). The solution of the temporal evolution of inhomogeneously sheared flow 

reduces to solution of the set of nonlinear partial differential equations for   and magnetic field perturbation, 

zh (see Aburjania et al. 2002): 

                                 ''
0 0( ) ( , )H

h
V y V C J

t x x x


    

    
        

    
,                              (1) 

                                  0 ( ) ( , )H H

h
V y h C J h

t x x x


  

    
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.                                                                                       (3)  

nN M  is density of neutral particles; m and M are masses of electrons and ions (molecules); e is the 

magnitude of the electron charge; c  is the light speed. Further we consider a motion in neighborhood of fixed 

latitude ( 0  ). The dimensionless parameter  is introduced here for convenience. In the ionospheric E 

region (80 150) km, where the Hall effect plays an important role, this parameter is equal to unity ( 1 ). In 

the F region (200 600) km, where the Hall effect is absent,   turns to zero ( 0 ).      

The system of Eqs. (1), (2), at corresponding initial and boundary conditions, describes nonlinear evolution 

of the spatial two-dimensional large-scale ULF electromagnetic perturbations in sheared incompressible 

ionospheric E- and F-regions. 

 From the equations (1), (2) we determine the temporal evolution of the energy of wavy structures, E( x,y,t )    

                                                    
2

0
'E

V ( y ) dxdy dxdy
t x y

 
 

  
  

  
  ,                                                    (4)  

where    

                             
2 2

2

0

1

2
E k h dxdy 

   ,  0
0
' dV ( y )

V ( y )
dy

 , 
2 2

2 2
0 Pi2

4
   Pi

n

N e N
k ,

N Mc

 
  ;                     (5)   

and the potential enstrophy Q  of wave perturbations: 

                  

2
2 2

0 02
0

1

2

' '''hQ h h
dxdy V dxdy V dxdy dxdy

t t x y x yk

 
  

       
       

       
  

    .          (6)                                         

We note that in the absence of zonal flow ( 0 0V  ) and Rayleigh friction ( 0  ) the wavy structure energy and 

enstrophy are conserved.  
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Therefore, the existence of sheared zonal flow can be considered as the presence of an external energy 

source. One can see, that presented zonal shear flow (term with 0V ( y )  in (4)) feeds the medium with external 

source of energy for generation of the wave structures (development of the shear flow instability). In this case it 

is necessary the velocity of the shear flow to have at least the first derivative according to meridional coordinate 

different from zero ( 0 0'V ( y )  ). This conclusion can be made by virtue of above used modal (local - spectral) 

approach, which can’t give much information about the features of the shear flow instability. But this doesn’t 

mean that such instability always arises and remains in such form. This is exactly due to non-adequacy of modal 

approach at investigation of the features of shear flows, which is already considered in the introduction. In shear 

flows the modal approach can detect only possibility of instability. But for investigation of instability generation 

conditions and its temporal development in the ionosphere an alternative approach, namely, non-modal 

mathematical analysis becomes necessary. As it will be shown in the section 4 on the basis of more adequate 

method for such problems –nonmodal approximation, shear flows can become unstable transiently till the 

condition of the strong relationship between the shear flows and wave perturbations is satisfied (Chagelishvili et 

al. 1996; Aburjania et al. 2006), e. i. the perturbation falls into amplification region in the wave number space. 

Leaving this region, e. i. when the perturbation passes to the damping region in the wave vector space, it returns 

an energy to the shear flow and so on (if the nonlinear processes and self-organization of the vortex structure 

will not develop before) (Aburjania et al. 2006). The experimental and observation data shows the same 

(Gossard and Hooke, 1975; Pedlosky, 1979; Gill, 1982). Thus, non-uniform zonal wind or shear flow can 

generate and/or intensify the internal gravity waves in the ionosphere and provoke transient growth of 

amplitude, i.e. transient transport the medium into an unstable state. In the section 4 we confirm this view by 

using a different, more self-consistent method for the shear flow. 

 

3. Local dispersion relation 

Equations (1) and (2) are partial differential equations the variable coefficients of which depend on the spatial 

coordinate y. An analysis of the existence of nontrivial solutions by direct expansion of the physical quantities 

in Fourier integrals it is impossible even for the initial stage of the evolution of wave perturbations. This is why 

we have to use a local approximation by assuming that the coefficients of Eqs. (1) and (2) are locally uniform 

(constant), ( 0v const ). This approach justifies the use of the Fourier expansion in spatial and time variables to 

analyze the spectrum of the perturbations described by these equations (Mikhailovskii, 1974). 

We represent the solution to Eqs. (1) and (2) in terms of the spatiotemporal Fourier expansion of the wave 

perturbations: 

                              x y x y x y x z[ ( x,y,t ),h( x,y,t )] [( ( k ,k ),h( k ,k )] exp i k x k y t dk dk       ,                 (7)                                                      

where k  is the wave vector and   is the frequency. Substituting representation (7) into Eqs. (1) and (2) yields 

the dispersion relation 

                              
2

2 2

2 2 2
0x x H x
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k C i k i k C
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 

.                             (8)                                                                   

Here 0xk V   . Assuming that the wave number  
1 2

2 2
/

x yk k k  is real, and the frequency is complex, 

0 0 1 0 xk V i i ,            , and taking in to account that the velocity 0HC   and 0H  , we 

obtain from dispersion relation (8) the spectrum of linear perturbations 

                                            
2

2
1 12 2
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 
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 

.                                        (9)                                                             

where 1 0 0xk V   , and the damping rate 

                                                        
1

1 2
2
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k
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.                                                                 (10) 

From formula (9) we can determine two wave branches: 

 

                             
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(i) E-region 1( )  . 

 

For E region of the ionosphere, where the Hall effect plays an essential role 1( )  , the equations (11) and (10) 

obtain the following form respectively: 

                                    
2 1 21 2

2
2 20

0 2 2

1
4

2 2

/( , )
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x

C k
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1
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                                                              (13)                                                 

Here
'

H    . 

Equation (12) describes the propagation ULF planetary electromagnetic waves in the ionospheric E-layer 

having two branches of oscillations fast 1
0
( )  (with “+” sign before the radical) and slow 2

0
( )  (with “ ” sign 

before the radical). The fast and slow mode (12) is an eigen oscillation of E-region of the ionospheric resonator. 

Wave is of electromagnetic origin and can exist in the presence of latitudinal gradient of the equilibrium 

geomagnetic field. It is seen that at H  , the first branch 1
00

( )
xk V   and for second branch we get 

                                                                   2
00 2

( ) x
x x H

k
k V k C

k


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In case long wave-length perturbations 
2

Hk / C , we get from (12) and (13)                                        
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   From these expressions we see that depending on the sign of H( )  , fast 1
0
( )  waves can propagate both 

westward and eastward virtually without damping, while slow 2
0
( )  waves are propagating only westward and 

are damping substantially (but for more large-scale waves the damping can be weak). 

In case of relatively short wave-length perturbations 
2

Hk / C , we get 
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As before, we see that depending on the sign H( )  , slow 1
0
( )  waves can propagate both westward 

and eastward and are damping substantially, while fast 2
0
( )  waves are propagating only westward without 

damping.  
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(ii) F-region 0( )  .      

For F-region of the ionosphere, where the Hall effect is absent 0( )  , from (11) and (10) we obtain following 

solutions: 
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In case long wave-length perturbations 
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From these expressions we see that   fast 1
0
( )  waves can propagate only eastward virtually without 

damping, while slow 2
0
( )  waves are propagating only westward and are damping substantially.                        

In case of relatively short wave-length perturbations 
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   
       
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,  1  
2

( ) 
  .           (24)      

We see that 1
0
( )  waves can propagate only eastward, while 2

0
( )  waves are propagating only westward. 

These waves are weakly damping. 

The wave branches (15) and (18) represent the dispersion relations for fast EM planetary waves stipulated 

by Hall conductivity ( 1  ) and the permanently acting factors in the E-region of the ionosphere  latitudinal 

gradient of the geomagnetic field and angular velocity of the Earth’s rotation. The wave branches (21), (23) and 

(24) represent also fast EM planetary waves caused by the global factors, acting permanently in the F-region of 

the ionosphere inhomogeneity of the geomagnetic field and angular velocity of the Earth’s rotation. As to the 

wave branches (16), (17) and (22), they are of slow magnetized Rossby (MR)-type. In the dispersion of the slow 

waves (16), (17) and (22) along with the latitudinal gradient of the Earth’s angular velocity latitudinal gradient 

of the geomagnetic field plays the important role, which reduces the phase velocity. The same for the fast waves 
(15), (18), (21), (23) and (24) non-uniform nature of the angular velocity of the Earth rotation stipulates the 

mutual coupling of the fast and slow waves, which causes intensification of the dispersion of the fast waves. 

Without such couplings, for example, the fast waves (15), (23) and (24) become non-dispersive. 

 

4. Non-modal analysis of the linear evolution of disturbances  

In deriving dispersion relations (8)-(11), we used a local approximation; i.e., we assumed that the quantities 

0  V and
''

0V  are locally uniform (as well as H  ,   and HC , as is usually done in the  -plane approximation) 

and expanded the physical quantities in Fourier integrals. The applicability of the local approximation to 

nonuniform medium and sheared flows is limited (Mikhailovskii, 1974). The results obtained by using this 
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approximation are valid only for the initial stage of the evolution of perturbations. In particular, when the 

background flow is spatially nonuniform in the meridional direction, applying the Fourier expansion in the y  

coordinate is unjustified. According to (Reddy et al. 1993; Trefenthen et al. 1993; Chagelishvili et al, 1996; 

Aburjania et al. 2006), a more adequate approach to investigating the evolution of wave perturbations in sheared 

flows in the linear stage is provided by a nonmodal (rather than modal, i.e., direct Fourier expansion) 

mathematical analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, for adequate description of the dynamics of ULF waves interaction with inhomogeneous 

ionospheric winds on the basis of dynamical equations (1), (2),  the non-modal mathematical analysis will be 

used below, which accounts non self-adjointness of the operators in this equations and non-orthogonality of the 

corresponding eigen-functions (Aburjania et al. 2006).  

In this section, for definiteness, we choose the velocity profile of the sheared flow (nonuniform wind) to 

have the simplest form 0V ( y ) A y  , where 0A  is the constant parameter of the wind shear, which we take 

to be positive and independent of y . The non-modal approach begins with a transformation to the convective 

coordinates  1 0 1 1x x v ( y )t, y y, t t,     that are the coordinates in the local rest frame of the mean flow.  

In our problem, this is equivalent to the following change of variables: 

                                               1 1 1x x Ayt, y y, t t,                                                               (25) 

or 

                              
1 1

Ay
t t x

  
 

  
,     

1x x

 


 
,     1

1 1

At
y y x

  
 

  
.                                 (26) 

In terms of the new variables, Eqs. (1) and (2) read 

               

2 22 2

1 12 2
1 1 1 1 1 1 1

0H

h
At C At

t y x x x y xx x


   

                  
              

                 

,               (27)                               

               
1

0H

h
h C

t x x




  
  

  
.                                                                                                                   (28)                                                                                                                                                                                                                                              

The coefficients of the initial set of linear equations (1) and (2) depend on the spatial coordinate y. Having 

made the above charge of variables, we switch from this spatial nonuniformity Eqs. (1) and (2) to the temporal 

nonuniformity in Eqs.(27) and (28). 

Hence, we have reduced the boundary-value problem to the Cauchy problem. Since the coefficients of Eqs. 

(8) and (9) are now independent of the spatial coordinates 1x  and 1y , we can apply the Fourier expansions in the 

spatial variables 1x  and 1y  to the equations, without using any local approximations and can independently 

consider the time evolution of the SFHs: 

Fig. 1. Evolution of the non-dimensional energy density  )(  (formulae 

(45) ) to the initial parameters:  10.H  ,   06.0 ,    01.0k x  ,   

100 .)(k y  ,   1.0S  ,  HC 1. 
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Fig. 2. Relief and level lines in the rest frame of the vortices ( , y) Uy   , 

calculated from formula (55)  for     0

0 1  ,   k 1 ,   
0æ  =0.5   (the 

longitudinal vortex street). 
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                       (29) 

Here, quantities with tilde (e.g., ]) denote the SFHs of the corresponding physical quantities. 

We substitute representation (29) into Eqs. (27) and (28), omit the tilde from the Fourier harmonics of the 

physical quantities, and switch to the dimensionless variables 

                              0 1t  ;     1 1( x ,y )
( x,y )

R
 ;    

2
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



 ;       
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h
h


 ;     

                        
0

A
S ;


   

1 1x,y x ,yk k R;   0z z xk k ( ) k S  ;  2 2 2
x zk ( ) k k ( )   ;     

                        
2

0

;
R





    

0

R
 


 ;   

0

H
H

C
C

R
 ;    2k ( ) ( );                                         (30) 

As a result, for each SFH of the perturbed quantities, in the non-dissipative case 0( )  , we obtain the 

equations 

                                                  
2

0x x Hk ik C h
k ( )

 


 


  


,                                                          (31) 

                                                               
2

0x x H

h
ik ik C h

k ( )




 


  


.                                                          (32) 

The closed set of Eqs. (31) and (32) describes the linear interaction of a ULF PEW with a sheared flow and the 

evolution of the related perturbations in an ionospheric medium. After the above manipulations, the wave vector 

of the perturbations, k x y( k ,k ( t ))  becomes time-dependent, 0y y xk ( ) k ( ) k S    ; 2 2 2
x yk ( ) ( k k ( ))   , that 

is, the wave vector is subject to a linear drift in wave-number space. Because of the time variation of the wave 

vector (i.e., the separation of the perturbation scales in the linear stage), the interaction even between the 

perturbations that occur initially on very different characteristic scales is highly pronounced (Aburjania et al . 

2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In wave number space, the total dimensionless energy density   of the wave perturbations, SFHs of which 

are determined by Eqs. (31) and (32), has the form 

                                              

2
2

2
0

1

2

h( )
[ k( )] ( )

k


   

 
  
 
 

.                                                          (33) 

Correspondingly, from Eq. (4) we can see that, in the presence of a zonal flow with the velocity 0V ( y ) , the 

energy density of the SFHs evolves according to law 
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                                                          0
'

x y
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d x y

   
 



 
  

 
.                                                  (34)                                                                           

In the absence of a sheared flow ( 0S  ), the total energy density of the wave perturbations in the 

ionosphere is conserved, 0d ( ) d    . 

Let us now turn to Eq. (34) to find out what is the result of the evolution of the energy of a wave 

perturbation: is it an increase or a decrease in its energy? To do this, we must calculate the right-hand side of 

Eq. (34), a task that requires solving Eqs. (31) and (32). In this way, differentiating Eq. (31) with respect to time 

and using Eq. (32), we arrive at the following second-order equation for the generalized stream 

function 2k ( ) ( )    : 

                                                     
2

1 22
0

d d
P ( ) P ( )

dd

 
  


   ,                                                      (35)    

where 
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 
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 
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H    .        (36) 

Equation (35) can be simplified by introducing a new variable (Magnus 1976). Setting 

 

                                                                 11 2Y exp ( / ) P ( ')d '    
  ,                                                        (37)    

                                                        

we can transform Eq. (35) to the equation of a linear oscillator with time-dependent parameters 

                                                                               
2 0Y ( )Y   .                                                                  (38)  

Here, the prime denotes the derivative with respect to time and 

                                                     
2

2 2
2 1 12

1 1
;        

2 4

d Y
Y ( ) P ( ) P ( ) P ( )

d
    


      

                                                    

2
2 2 2

2 2 2
1

4

y'x H x
H

H

k ( )k C k
C iS

k ( )C k ( ) k ( )


 

  

   
       

  

.                             (39)  

We solve Eq. (38) in the adiabatic approximation (Zel'dovich and Myshkis, 1973) by assuming that the quantity  

( )   varies adiabatically with time: 

                                                                                       2( ) ( )    .                                                       (40)        

Under this assumption, homogeneous equation (38) can be solved approximately. For a flow with 1S  , 

condition (40) is satisfied for a wide range of wave numbers, 0y y xk ( ) k ( ) k S   . In other words, when the 

time variation of yk ( )  is due to the linear drift of the wave vector in wave number space, condition (40) is 

valid throughout the entire evolution of the SFHs. The approximate solution to Eq. (38) can then be represented 

as 

                                                                    

0

C
Y exp i ( ')d '

( )



  
 

 
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  
 ,                                                     (41)                    

where C const . Substituting representation (41) into formulas (37) and (30), we can construct the solutions to 

Eqs. (31) and (32): 
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Here, with allowance for the obvious inequality 2'
HC / k ( )  , we assume that 
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Inserting formulas (42)-(44) into expression (33) and taking into account the inequalities 2 2 6
0 4 10 1k     , 

H H 0, 0  C 0H , ,       , we arrive at the following expression for the normalized energy density of the 

Fourier harmonics:    
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x y x H
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


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  

.                                                (45) 

In the initial evolutionary stage such that 0 0y xk ( ) / k   (when  0yk ( )  ), the denominator in expression 

(45) decreases with time  , 0 0 100y xk ( ) / ( Sk )      and, accordingly, the energy density of the SFHs 

increases monotonically and reaches its maximum (which is several times higher than its initial value) at 

100    . On longer time scales,     , the energy density decreases (when 0yk ( )  ) and 

monotonically approaches a value approximately equal to the initial density. In other words, in the initial 

evolutionary stage, when 0yk ( )   and the SFHs of the perturbations are in the amplification range in wave 

number space, the perturbations temporarily extract  energy from the sheared flow to increase their amplitude 

several times on the time interval 0 0y xk ( ) / ( Sk )    ; in the subsequent stage, when 0yk ( )  , and the 

SFHs of the perturbations are in the damping range in wave number space, the perturbations return the energy 

back to the sheared flow on time scales       (Figure 1), provided that nonlinear processes have not come 

into play and no self-organization of the wave structures has occurred prior to this stage. In a medium with a 

sheared flow, such an energy transient redistribution is caused by the fact that the wave vectors of the 

perturbations become time-dependent, k k( ) ; that is, the scales of the perturbations are partitioned and the 

structures occurring on comparable scales efficiently interact with each other, thereby sharing the free energy of 

the system among themselves.  

So, within a time interval      EM ULF wave disturbances redistribute the mean shear flow energy – 

draw energy from the main flow (the shear energy) and significantly grow (by several orders). 

 

 

5. Shear flow driven nonlinear solitary vortex structures   

It was shown in previous section, at the zonal flow velocity inhomogeneity, at interaction with the wind the 

EULF wave perturbations can sufficiently increase own amplitude and energy and in their dynamics the 

nonlinear effects will be appeared. As a rule, considering nonlinearity, steepness of the wave front increase 

leading to its breaking or formation of shock wave. However, as it is well known, shock waves do not arise 

spontaneously in the ionosphere. This indicates that in the real ionosphere for the planetary-scale motions when 

dissipative forces can be neglected, nonlinear effects of the medium must be essential (Aburjania et al. 2003, 

2007). As a result, before breaking the wave must disintegrate either into separate nonlinear waves or into the 

vortex formations. If nonlinear increase of steepness of wave front will be exactly compensated by dispersion 

spreading, then stationary vortex structures will appear in the ionosphere. The more so, as experimental data and 

observations show (Bengtsson and Lighthill, 1982; Cmyrev et al, 1991; Petviashvili and Pokhotelov, 1992; 

Nezlin, 1994; Aburjania, 2006) that the nonlinear solitary vortex structures may exist in the different layers of 

Earth’s atmosphere. Thus, the shear flow energy accumulation in the ionospheric disturbances may be results in 

the formation of nonlinear vortex structures. So, the ionosphere medium with sheared flow creates a favorable 

condition for formation of the nonlinear stationary solitary wave structures. 

  

5.1. The stationary vortex streets  in the nondissipative ionosphere 

Vortex streets of various shapes can be generated in conventional liquid and plasma media with a sheared flow 

as a result of the nonlinear saturation of the Kelvin-Helmholtz instability (Gossard and Hooke, 1975; Kamide 

and Chian, 2007).  

Thus, we will seek the solution of the nonlinear dynamic equations (1), (2) (in nondissipative stage, 

when 0  ) in the form 0( ,y )   , h h( ,y ) , where x U   , i.e. the stationary solitary structures, 
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propagating along x-axis (along the parallels) with velocity U const  without changing its’ shape. In 

accordance to Aburjania and Chargazia (2007), system of equation (1), (2) has the solution 

                                                                         H

H

h( ,y )
C U


 


,                                                                 (46)                                                        

                                               0 0 0 0

y'
' H

H

C U
v ( y ) y F( v ( y )dy Uy )

C U

 
 


    


 ,                                  (47)    

with F( )  being an arbitrary function of its argument and 2 2 2 2/ /      y .Vortex streets have 

complicated topology and can occur when the function F( )   in Eq. (47) is nonlinear (Petviashvili and 

Pokhotelov, 1992, Aburjania, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In (47) we assume that a nonlinear structure propagates with the velocity U satisfying the condition 

                                                                       
'

HU C



 .                                                                     (48)   

For this case, choosing F to be a nonlinear function, 
0 2 0
0 02F( ) (exp( / )       (Petviashvili and 

Pokhotelov, 1992; Aburjania, 2006), we can reduce Eq. (47) to                                      

                                                                 0 2 0
0 0 0 02Uy k exp Uy /        

 
 .                                      (49)    

Then we introduce the new stream function                                  

                                                                      0 0 0( ,y ) ( y ) ( x,y )     ,                                                      (50) 

and the velocity potential  0( y ) of the background sheared zonal flow, 

                                                                                   0
0

d ( y )
V ( y )

dy


 .                                                            (51)                                                                                 

Figure 3. The level lines and relief of the stream function of vortex solution (55) in the 

moving system of coordinates to the parameters: a). 0

0 1  , U 0.1 , 
0æ 0.2 , 0.5  ; 

b). 0

0 1  , U 0.1 , 
0æ 0.2 , 1  ; c). 0

0 1  , U 0.1 , 
0æ 0.2 , 0.5  ; d). 0

0 1  , 

U 0.1 , 
0æ 0.2 , 1  . 
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The stream function of the background sheared flow 0( y ) can be chosen to have the form 

                                                                             0
0 0 0æ ( y ) Uy ln( y )   .                                                   (52)                                        

Here, 0
0  is the amplitude of the vortex structure, 2 /  kappa is its characteristic size, and  02 æ/  is the 

nonuniformity parameter of the background sheared flow.  

Taking into account formula (50) and using stream function (52), we can write vortex equation (49) as 

                                                            
0

0 0

2
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0 0 0 2
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/
e

 
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 
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.                                               (53)                                   

This equation has the solution (Mallier and Maslowe, 1993)                                                
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 

,                                  (54)    

which describes a street of oppositely circulating vortices. Substituting solution (54) and stream function (52) 

into formula (50), we arrive at the final solution 

                                                          0 2
0 0 01 æ( ,y ) Uy ln[ ch( y ) cos( )]        .                               (55)                                           

Formulas (54), (52), and (51) yield the following expressions for the velocity components of the medium 

and sheared flow: 
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0

0 0 0 0æ æV ( y ) U th( y )  .                                                 (58)                                                                                                                                                     

For  0æ 1  , solution (56) describes a background flow of the type of sheared zonal flow with velocity (58). 

For 2
0æ 1 , a street of cyclonic-type vortices forms in the middle of the zonal flow with velocity (58) (Figure 

2). A solution like that described by formulas (56) and (57), with closed current lines in the form of cat's eyes, 

was for the first time obtained by Kelvin. 

The vortex structures move with velocity (48). If we take into account that 0H  , 0'
H      as far 

as 0H   , 0HC   from expression (48) follows 0U  . For E-region the characteristic parameters 
7N/N 5 10  n ,   3 110  s  H peH / ( Mc) ,   6 R 6 4 10. m,  4 1

02 10 rad s    , we get that 

11 1 1
0 02 0 8 10sin / R . m s       , 

110 HC km s  , 
11 1 1

0 4 10H n H( N / ( N R )) sin m s        . 

Thus, the vortices move with velocity 4 H HU C C   along the parallels to the east. Therefore, this velocity 

is greater than the phase one of the corresponding linear periodic waves
110 km sHU C    . So, the vortices 

don’t come into resonance with the linear waves and don’t loose energy on their excitation (Stepanyants and 

Fabrikant 1992).   
For estimation of the linear scale of the vortex structures let’s remember the general formal relation between 

the dispersion equation of the linear waves and with so-called modified dispersion equation of the nonlinear 

structures (Petviashvili and Pokhotelov, 1992; Aburjania, 2006). This is coupling of the phase velocity of linear 

wave pV / k with motion velocity of the nonlinear structures U :– / k U  ; relation of the wave vector k  

of the linear disturbances with the characteristic linear scale of the vortex d : – 1k d  . Taking into account 

this fact for characteristic scale of the fast vortex structures from (14) we get: 

                                          

1 2/

Hf C
d



 
  
 

.                               (59) 

And for the slow Rossby type vortex structures from the equations (16), (17) we get: 
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1 2/

s U
d



 
  
 

.                               (60)                           

Substituting in these expressions the typical for the Earth’s ionosphere numerical values
110 km sHC  , 

11 1 110 m s    , we find for fast structures 410fd km . For slow Rossby-type vortices 110 m sU  and we 

can obtain 310sd km .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For magnetic field perturbation from (46) and (55), we can obtain the following estimation:  

                                            Hh d  ,                                (61)                      

valid for both the fast and slow modes. For the ionospheric conditions 
11 1 14 10H m s     , thus using the 

estimations to carried out above, we my conclude that fast vortical motion generate magnetic pulsations 
410fh T , while in case slow Rossby-type vortical motions – 510sh T . 

Note that nonlinear stationary equation (47) also has an analytic solution in the form of a Larichev-Reznik 

cyclone-anticyclone dipole pair and other class of solitary solutions by different profiles of background shear 

flows (Petviashvili and Pokhotelov, 1992; Jovanovich et al. 2002; Aburjania, 2006; Aburjania et al. 2003; 2004; 

2007). 

 

5.2. Attenuation of the vortex streets  in the dissipative ionosphere 

In the dissipative approximation ( 0  ), we switch to the above self-similar variables (  and y ) and take into 

account the relationship / U /       , which then holds. As a result, we can write Eqs. (1) and (2) as 

                                     0H

h
U C J( , )


    

  

  
     

  
,                                         (62)                                         

Figure 4. The level lines and relief of the stream function of vortex solution (55) in the 

moving system of coordinates to the parameters: a). 0

0 1  , U 0.1 , 
0æ 0.5 , 1  ; b). 

0

0 1  , U 0.1 , 
0æ 0.5 , 1  ; c). 0

0 1  , U 0.1 , 
0æ 0.9 , 1  ; d). 0

0 1  , U 0.1 , 

0æ 0.9 , 1  ; 

 



 

 102 

                                                  0H H

h
( C U ) J( ,h )


 

 

 
   

 
.                                                  (63)                                                                               

Equation (63) has the solution 

                                                                        H

H

h( ,y )
C U


 


.                                                                  (64)                                                        

Substituting solution (64) into Eq. (62), take into account the expression (48) and rearranging the term, we 

arrive at a single nonlinear equation: 

                                                                          0D
U






 
  

 
,                                                                   (65) 

where  

                                                               
1

D
U y y



 

  

     
   
     

. 

The equation (65) yield a solution as                                   

                                                                         0   exp
U


  

 
   

 
.                                                             (66) 

Here the zero
th
 order 0  is identified with solution (55) (Figure 2). The incorporation of dissipation effects has 

modified the solution of the dynamical non-linear differential equation. It can be seen from (66) that friction (or 

collision) is responsible for exponential decay of stationary nonlinear vortex structures in space. This street of 

vortices can be studied by plotting the stream line function ( ,y )  (Eqs. (66) and (55)). We have free 

parameters 0
0   ,   and 0æ , and the velocity of movement of the structures U  will be determine by (48). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The level lines and relief of the stream function of vortex solution (55) in the 

moving system of coordinates to the parameters: a). 0

0 1  , U 0.6 , 
0æ 0.2 , 0.5  ; 

b). 0

0 1  , U 1.5 , 
0æ 0.2 , 0.5  ; c). 0

0 1  , U 5 , 
0æ 0.2 , 0.5  ; d). 0

0 1  , 

U 10 , 
0æ 0.2 , 0.5  ; 
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Figure3a shows the 0.5   case and 0
0 1    U 0.1,,    0æ 0 2. , while Figure 3c shows the 1   case. 

Three dimensional plots for the same parameters are shown in Figure 3b and 3d. At decrease of the linear scales 

of the vortices (with increase of  ) the number of the vortices will increase in the given area of the medium and 

their amplitudes will decrease (Figure 3c, 3d).The reduction in   causes a reduction in number of vortices, e.g., 

the 1  stream function plots six vortices (Figure 3c, 3d). We, therefore, note that the number of vortices 

increases with increasing , e.g. the formation of nonlinear structures is attributed to low frequency mode. 

At decrease of the linear scale of the background wind inhomogeneity (increasing 0æ ) the linear scales, 

amplitudes and steepness of peaks of the vortices decrease accordingly (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The street of vortices is in almost stationary frame of reference, it disappears for higher frame velocity 

( U 1 ), i.e. the contribution of logarithmic and hyperbolic trigonometric functions are no longer overcome by 

the contribution of linear term viz.  Uy in (55) and, therefore, vortex formation is replaced by straight stream 

lines (Figure5). Due to increase of the translation velocity (U ) of the structures and the background flows the 

scales and amplitudes of the generated vortices will decrease. In case of comparably high velocity background 

wind ( 1U  ) the vortex will not be generated at all and only the background flow will remain in the medium 

(Figure 5).  Further, due to the nonlinear term, the velocity of dispersive waves must be greater than the phase 

velocity of a wave which resulted in a bending of the wave front and hence vortices start to form. 

The street of vortex disappears in the space for high dissipation rate  (or collision frequency) (Figure 6). 

We credence that the dissipation effect has not permitted the vortex formation, but the topography of stream line 

function has been modified (Figure 6). 

 

 

 

Figure 6. Spatial damping of the vortex structures (the level lines and relief of 

the stream function), calculated from formula (66)  to the parameters: a). 0

0 1  , 

U 0.1 , 
0æ 0.2 , 0.3  , 0.0000  ; b). 0

0 1  , U 0.1 , 
0æ 0.2 , 0.3  , 0.0025  ; 

c). 0

0 1  , U 0.1 , 
0æ 0.2 , 0.3  , 0.0100  ; 
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5.3. Relaxation of the vortex structures  in the  ionosphere 

The real mechanism of dissipation in the atmosphere against the background of baroclinic, nonlinear and 

dispersive effects generates in the ionosphere moving spatial structures representing the equilibrium stationary 

solutions (54) and (55) of the governing magneto-hydrodynamic equations (1) and (2). For qualitative 

estimation of the evolution and the temporal relaxation of stationary vortex structures in the ionosphere, built in 

previous paragraphs, the dynamic equations (1) and (2) can be approximately written as the following 

Helmholtz’s vortex transfer equation:  

                                                                ( )

   


V P V

t
,                                                                   (67) 

which describes the generation of nonzero vorticity  V  (( )zV   ) in the ionosphere under the action 

baroclinic vector P (source function)  taking in to account the temperature contrasts in the form of advection of 

warm and cold, medium dispersion and influence of small nonlinearity. According to the observations (Gill, 

1982; Pedlosky, 1982), vector P for low-frequency disturbances is a slowly varying function of time. In this 

case the vortex Eq. (67), with the initial conditions of Cauchy 0 0tV    (at the initial moment in the 

atmosphere there no vortices) has the bounded solution: 

                                                                      1 tP
V e





   .                                                                     (68)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissipative effects have an accumulative nature and its action becomes perceptible only after a certain 

interval. From Eq. (68) it follow that vorticity will increase linearly with time only at small time intervals 

( 1t /  ) under the action of baroclinicity and some other effects. After a certain time, when the dissipation 

effect reaches a specific value, vortex growth speed decreases (the vorticity growth rate decreases) and for the 

large intervals of time ( 1t /  ) it tends to constant (equilibrium) value / P  (Figure 7).The value of 

dimensional time 51 10 24T / s   hour can be called a relaxation time of non-stationary vortex street. 

Indeed, for the lower atmosphere relaxation time is of the order of twenty-four hours (Gossard and Hooke, 

1975; Pedlosky, 1982) and consequently here large scale vortices must be long-lived. Stationary solution 

describes the equilibrium between baroclinicity and the dissipation effects ( ( )P V  ). As a result, the 

dissipative structure is generated in the ionosphere in the form of stationary street of cyclones and anticyclones.                     

 

  

6. Conclusions  

Thus, in the present article we have obtained the simplified system of nonlinear dynamical equations describing 

linear and nonlinear interaction of planetary electromagnetic ultra-low-frequency fast and slow wavy structures 

with zonal shear flow in the Earth’s dissipative ionosphere. Along with the prevalent effect of  Hall conductivity 

for such waves, the latitudinal inhomogeneity of both the angular velocity of the Earth’s rotation and the 

geomagnetic field becomes essential. Due to spatial inhomogeneity of the Earth’s rotation velocity fast and slow 

waves can be coupled. Such coupling results in an appearance of strong dispersion of these waves. Note that, 

Figure 7. Relaxation of the vorticity of perturbations, calculated from formula (68) to 

the parameters: a). 0.8,   P/ =10   ;  b). 0.2,   P/ =10   . 
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without this coupling the fast branches in the both ionospheric E and F-regions lose the dispersion property for 

both large and short wave-length perturbations. 

Effective linear mechanisms are revealed, which account the transient pumping of shear flow energy into 

wave disturbance energy, an extreme intensification (by several orders) of wavy processes, self-organization of 

generated wavy disturbances into the nonlinear solitary vortex structures, dissipation relaxation of vortices and 

finally the conversion of perturbation energy to heat. A remarkable feature of the sheared flow is a reduction in 

the scales of wave perturbations in the linear regime due to the variation of the wave vector of the perturbations 

with time k k( )  and also due to the linear drift of the SFHs of the perturbations in wave number space and, 

accordingly, the energy transfer into small scales, i.e., into the dissipative region. The Linear intensification of 

EM ULF wave may take place temporarily, for certain values of the parameters of the medium, shear and 

waves. This makes an unusual way of shear flow heating in the ionosphere: waves draw up the shear flow 

energy and pump it through the linear drift of spatial Fourier-harmonics (SFH) in the space of wave numbers 

(subdivision of disturbance scales) to the damping domain. Finally, the friction, viscosity and inductive damping 

may convert this pumped energy to heat. The process is permanent and may lead to a strong heating of the 

medium. The heating intensity depends on the initial disturbance level and shear flow parameters. 

The generation of the slow electromagnetic linear waves in the ionospheric E-region by the gradient of both 

geomagnetic field’s, angular velocities of the Earth’s rotation and inhomogeneous zonal wind was shown. Slow 

wave propagate in E-region along the latitudinal circles westward and eastward against a background of mean 

zonal wind and are the waves of Rossby type. The frequency of the slow waves vary in the diapason of 

( 4 610 10  )
1s
; period of these waves vary in the range from 2 hour to 14 day; wavelength is about 310  km 

and longer, the phase velocity has the same order as the local winds’ do from a few to hundred of 
1m s  

( 1 100s
pV ( ) 

1m s ). The slow waves experience the strong attenuate by Rayleigh friction between the 

layers of the local atmosphere and the damping factor is 5 110s| | s    . Though the attenuation would be 

weaker for longer large-scale waves with wavelength of about 410 km and the timescale of a week or longer. 

The linear slow waves perturb the magnetic field, which has the order of 4s s
ph eNV / c   (  - transversal 

shift of the charged particles). For the value of the phase velocity 150s
pV m s   and 1   km, we have 1sh   

nT. Perturbed magnetic field strength increases up to 20 nT, if transversal displacement of the system  =10 km 

and the phase velocity 210s
pV ~

1sm  . Thus, the linear slow electromagnetic waves in the dynamo-region are 

accompanied by the noticeable micro-pulses of the geomagnetic field and have the same order as the micro-

pulses caused by qS  currents in the same region. The slow waves are generated by the dynamo electric field 

0 dE V H /c . These waves, on seen, were observed in the experiments (Cavalieri et al. 1974; Manson et al. 

1981; Sharadze et al. 1989; Zhou et al. 1997).   

Generation of the linear fast planetary electromagnetic waves in the ionospheric E-region by the gradient of 

geomagnetic field, the Hall’s effect and inhomogeneous zonal wind was established. These waves propagate 

along the latitude against a background of the zonal-mean flow westward and eastward at the speed of a few 
1km s  ( 11 7f

pV ( ) km s   ) in the dynamo-region. The waves have the frequency of order of 

1 4 110 10( )s   ; the periods are in the interval from 4 minutes to 6 hours; wavelength of about 
310  km and 

longer. They attenuate weakly and 
7 10 01 10f| | ~ . ~ s   

. The essential micro-pulses of the geomagnetic field 

caused by the fast waves equal to 32 10f f
Hh eNC / c ~ nT. They could be assumed as a new mode of the 

own oscillations in E-region of ionosphere.  Frequencies and phase speeds of fast waves depend on density of 

the charged particles. Therefore, the phase velocities of fast disturbances in E-region of the ionosphere differ 

almost by one order of magnitude for daytime and nighttime conditions. High phase velocities, as well as their 

strong change between day and night preclude the identification of these disturbances with MHD waves. The 

fast waves are caused by oscillations of the electrons, completely frozen-in the geomagnetic field and are 

generated by the vortex electric field 0 v DE V H / c . These waves were observed in the experiments 

(Al’perovich et al. 1982; Sharadze et al, 1988; Burmaka et al, 2004; Georgieva et al, 2005). 

It is established, that in the ionospheric F-region inhomogeneity of the geomagnetic field and 

inhomogeneous zonal wind generates fast planetary electromagnetic wave, propagating along the latitude circles 

to the east or to the west with phase velocity 5 50f
pV ( )   km s

-1
. Frequency of waves is in limits 
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3 110 10( )s  and the waves are weakly damped with decrement 6 110f s   . The period of perturbations 

varies in a range (1 110) s. Amplitude of geomagnetic micro pulsations, generated by these waves, is about 
310fh  nT. These waves are new modes of eigen oscillations of F-region of the ionosphere. Such waves as 

magneto-ionospheric wave perturbations have been found out in experiments (Sharadze et al 1988, Sorokin 

1988, Bauer et al 1995, Burmaka et al 2004, Georgieva et al 2005, Fagundas et al 2005).  

The frequencies of the investigated waves vary in the band ω~ (10- 10
-6

) s
-1 

and occupy both infrasound and 

ULF bands. Wavelength is λ~ (10
3
 -10

4
) km, period of oscillation isT ~ 1 s 14  days. The electromagnetic 

perturbations from this band are biological active (Kopitenko et al. 1995). Namely, they can play an important 

role as a trigger mechanism of the pathological complications in people having the tendency to hyper tensional 

and other diseases. Thus, these waves deserve great attention, as they are to be the significant source of the 

electromagnetic pollution of environment. 

It is show, that at interaction with the inhomogeneous local wind the EM ULF wave perturbations can 

sufficiently increase own amplitude and energy and in their dynamics the nonlinear effects will be appeared. 

Dynamical competition of the nonlinear and the dispersion effects at the different layers of the ionosphere 

creates a favorable condition for self-organization of the EM ULF disturbances into nonlinear vortex structures. 

The self-localization of the planetary ULF waves into the long-lived solitary vortex streets in the non-dissipative 

ionosphere is proved in the basis of the analytical solution of the governed nonlinear dynamic equations. The 

exact stationary solution of these nonlinear equations has an asymptote ~ exp( r )   at r  , so the wave is 

strongly localized along the Earth surface. The translation velocity U of ULF EM vortices is very crucial which 

in turn depends on parameters  and H . From analytical calculation and plots we note that the formation of 

stationary nonlinear vortex street require some threshold value of translation velocity U (48) for both 

nondissipation and dissipation complex ionospheric plasma. For some large value of the background wind’s 

spreading velocity ( 10U  ) the vortex structures may not be raised at all and only the background wind will be 

preserved in the medium (Figure 5). Number of vortices in generated nonlinear structures and a value of 

amplitudes of these vortices essentially depend on the size of the background wind’s inhomogeneity – 

decreasing the latter – generated vortex’s size and amplitude will automatically decrease (Figure 4). It’s shown 

that the space and time attenuation can’t resist the formation of the vortex structures, but affect the topographic 

features of the structures (Figure 6, Figure 7). The generated nonlinear vortex structures are enough long-live (> 

24 hour) in dissipative ionosphere.  

Depending on the type of velocity profile of the zonal shear flow (wind), the generated nonlinear long-lived 

vortex structures maybe represent monopole solitary anticyclone or cyclone, the cyclone – anticyclone pair, 

connected in a certain manner and/or the pure dipole cyclone – anticyclone structure of equal intensity, and/or 

the vortex street, or the vortex chains, rotating in the opposite direction and moving along the latitudinal circles 

(along the parallels) against a background of the mean zonal wind (see also -  (Jovanovich et al. 2002, Aburjania 

et al. 2003; 2006; 2007)). 

The nonlinear large-scale vortices generate the stronger pulses of the geomagnetic field than the 

corresponding linear waves. Thus, the fast vortices generate the magnetic field 
510fh nT , and the slow 

vortices form magnetic field 
410sh nT . The formation of such intensive perturbations could be related to the 

specific properties of the considering low frequency planetary structures. Indeed, they trap the environmental 

particles, and the charged particles in E- and F-regions of the ionosphere are completely or partially frozen into 

the geomagnetic field. That’s why, the formation of these structures indicates at the significant densification of 

the magnetic force lines and, respectively, the intensification of the disturbances of the geomagnetic field in 

their location. Since, the number of the capture parcels is the order of the passed-by (transient), the perturbation 

of the magnetic field in the stronger faster vortices would be the same order as of the background field. On the 

earth surface located 0R ((
21 3 10~ ( )  km) below the region of the researching wave structure, the level of the 

geomagnetic pulses would be less by 0 0exp( R )  factor. 0  is the characteristic length of the 

electromagnetic perturbations. Since 
2

0 0 010 10~ ( )R R    the magnetic effect on the earth would be less 

then in E- and F-regions, but in spite of this they are easily registered too. 

We have defined the velocity diapason of propagation for vortical structures and show that vortices move 

faster than the corresponding linear waves. This means that if the source (for example, the above mentioned 

nonlinear vortex structure) moves along parallels at a velocity greater than max
pV , the source does not come in 

resonance with the corresponding linear waves. Nonlinear vortices moving faster than the corresponding linear 
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waves can retain their non-linear amplitude, as far as they do not lose energy by radiation of linear waves. It 

means, that these sources can not excite a linear wave due to Cherenkov mechanism, and can retain its initial 

energy (Stepanyants and Fabrikant, 1992). Thus, these vortex structures can be generated, self-sustained and 

propagated with velocity max
pU V along the horizontal in any direction. 

The motion of medium particles in studied nonlinear vortex structures is characterized by nonzero vorticity 

0 V , i.e. the particle rotate in vortices. The characteristic velocity of this rotation cU  is of order of the 

vortex velocity U , cU U . In this case the vortex contains the group of trapped particles (the number of these 

particles is approximately the same as the number of transit particles); rotating, these particles move 

simultaneously with the vortex structure. Therefore, being long-lived objects, non-linear planetary-scale 

electromagnetic vortex structures may play an important role in transporting matter, heat, and energy, and also 

in driving the macroturbulence of the ionosphere (Aburjania, 1990; 2011). In particular, the vortex structures 

that play the role of “turbulent agents” can be treated as elements of the horizontal macroscopic turbulent 

exchanges in global circulation processes in the ionospheric E and F-layers. The coefficient of the horizontal 

turbulent exchange can be estimated from the Obukhov-Richardson formula (Monin and Yaglom, 1967): 
2 4 3 2 110 /

TK d m s  . Thus, for vortices with dimensions of about 310d ~ km at latitudes of about 50  º-55º, 

we obtain 
6 2 13 10TK m s  . This estimate (which can be regarded as an upper one) shows that, in the global 

exchange processes between high and low latitudes, the meridional heat transport from north to south in the 

ionospheric E and F-layers should be of macro turbulence nature  (recall that, in the ionosphere, the polar 

regions are warmer than the equatorial region).  

The fast and slow electromagnetic planetary waves are own degree of freedom of the E and F-regions of the 

ionosphere. Thus, first of all, the impact on the ionosphere from top or the bottom (magnetic storm, earthquake, 

artificial explosions and so on) induces (or intensify) the wave structures of these modes (Aburjania and 

Machabeli, 1998). At the certain strength of the source, the nonlinear solitary vortices would be generated 

(Aburjania, 1996), which is proved by the observations (Bengtsson and Lighthill, 1982; Chmyrev et al. 1991, 

Nezlin, 1999; Shaefer et al. 1999).  

Hence, inhomogeneity of the Earth’s rotation along the meridian, geomagnetic field and zonal prevailing 

flow (wind) can be considered among the real sources generating planetary ULF waves and vortex structures of 

an electromagnetic nature in the ionosphere. Such nonlinear structures can arise permanently and finally may 

constitute the strong vortical (or structural) turbulence in the medium (Aburjania, 1990; 2011; Aburjania et al . 

2009). 
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amindis Semqmneli ultra dabali sixSiris eleqtromagnituri 
struqturebi wanacvlebiT dinebian ionosferoSi 

 
oleg xarSilaZe, xaTuna Cargazia 

 
abstraqti 

 

naSromi eZRvnebaGultradabali sixSiris ელექტრომაგნიტური talRurი 
struqturebis tranzientul zrdas da Semdgom wrfiv da arawrfiv dinamikas 
mbrunav disipaciur ionosferoSi, romelic ganpirobebulia araerTgvarovani 
zonaluri qarebis (wanacvlebiTi dineba) arsebobiT. planetaruli uds 

eleqtromagnituri talRebi generirdebian იონოსფერულ garemosa da sivrciT 
araerTgvarovani geomagnituri velis urTierTqmedebiT. napovnia 
didmasStabiani uds eleqtromagnituri talRebis generaciis da Semdgomi 
gaZlierebis efeqturi wrfivi meqanizmi wanacvlebiT dinebebSi. naCvenebia, rom 
es talRuri SeSfoTebebi efeqturad qaCaven energias wanacvlebiTi 
dinebebisgan da zrdian sakuTar energias da amplitudas (ramdenime rigiT) 
drois mixedviT algebruli wesiT. amplitudis zrdasTan erTad irTveba 
TviTlokalizebis meqanizmi da es SeSfoTebebi TviTorganizdebian arawrfivi 
ganmxoloebuli, Zlierad lokalizebuli uds eleqtromagnituri grigaluri 
struqturebis saxiT, ganpirobebuli SeSfoTebaTa profilis arawrfivi 
grexiT. wanacvlebiTi qaris siCqaris profilze damokidebulebiT arawrfivi 
uds eleqtromagnituri struqturebi SeiZleba iyos monopoluri, grigaluri 

jaWvi an grigaluri ბილიკი araerTgvarovani zonaluri qaris fonze. 
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analizuri da ricxviTi gamoTvlebidan naTeli xdeba, rom stacionaruli 
grigaluri struqturebis warmosaqmnelad saWiroa siCqaris gadatanis raime 
zRvruli mniSvneloba orive disipaciuri da aradisipaciuri ionosferuli 
plazmisaTvis. Seswavlilia grigalebis Caqrobis droiTi da sivrciTi 
maxasiaTeblebi. Sefasebulia grigalis arsebobis maxasiaTebeli dro 
disipaciuri ionosferoSi. xangrZliv grigalur struqturebs gadaaqvT 
CaWerili nawilakebi, siTbo da energia. amrigad, gansaxilveli struqturebi 
SeiZleba warmoadgendnen uds eleqtromagnitur talRur 
makroturbulentobis struqturul elementebs ionosferoSi. 

 
 

 

Ултранизкочастотные электромагнитные погодаобразующие  

структуры в ионосфере со сдвиговым течением 

 

Олег Харшиладзе, Хатуна Чаргазиа 

 

Абстракт 

Работа посвяшена изучению транзиентного нарастания и дальнейшей линейной и 

нелинейной динамике ультранизкочастотных (УНЧ) планетарных электромагнитных (ЭМ) волн 

в диссипативной врашающейся ионосфере в присутствии неоднородного зонального ветра 

(сдвигового течения). Планетарные ЭМ УНЧ волны генерируются при взаймодействии 

ионосферной среды с прастранственно неоднородным геомагнитным полем. Анализируется 

эффективный линейный механизм генерации и усиления планетарных ЭМ волн в сдвиговых 

течениях. Показано, что эти волны эффективно черпают энергию сдвигового течения и 

существенно увеличивают свою амплитуду и энергию по алгебрайческому закону. С 

увеличением амплитуды возмущений включается нелинейный механизм самолокализации и эти 

возмущения самоорганизуются в виде сильнолокализованных УНЧ ЭМ нелинейных 

уединенных вихревых структур, обусловленных нелинеыным укручением профиля 

возмущения. В зависимости от вида профиля скорости сдвигового течения нелинейные 

структуры могут быть как чисто монопольным вихрем, так и вихревой дорожкой и вихревой 

цепочкой на фоне неоднородного зонального ветра. Как показывают аналитические и 

численные исследования, для формирования стационарных нелинейных вихревых структур 

необходима опредиленное значение скорости переноса как в диссипативной так и в 

недисипативной ионосферной плазме. Изучена временные и пространственные характеристики 

затухания вихрей. Дана оценка характерного времени затухания вихря в диссипативной 

ионосфере. Долгоживущие вичревые структуры переносят захваченные частици, тепло и 

энергию в среде. Таким образом рассмотренные структуры могут быть структурными 

элементами УНЧ ЭМ макротурбулунтности в ионосфере. 

 

 

 

 

 

 

 

 

 


