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ABSTRACT

The occurrence of a glacial mudflow in the Shovi gorge on August 3, 2023 was caused by a destructive process on the
Thilisa glacier. Based on the existing picture of the spread of the mudflow, it is possible to carry out an analysis
regarding the rheological qualities of the water-saturated soil mass that forms its basis. It is also possible to
approximately estimate the parameters of various types of hydrodynamic waves, the generation of which was probably
possible during the propagation of the debris flow. It seems that such a problem can be satisfactorily solved only in the
case of a correct assessment of the values of dimensionless criteria for the flow of debris flow, which are convenient
quantitative characteristics that simplify the analysis of the qualitative consequences of applying the principle of
hydrodynamic similarity. For example, in the case of approximating the bed of a debris flow with a rectangular
channel, you can use the results of well-known analytical solutions obtained under simplifying assumptions that are
valid for certain intervals of variation in the Reynolds and Froude similarity numbers. In particular, in the shallow
water approximation, in the case of sufficiently large Reynolds numbers, when the fluid flow is highly turbulent, the
Froude parameter allows one to fairly correctly simulate changes in the flow regime that occur as a result of the
generation of hydrodynamic waves. The negative effects that often accompany the process of propagation of wave
disturbances largely depend on the type of these waves. Therefore, in the case of a mudflow in the Shovi gorge, it seems
quite realistic, for example, the generation of the so-called rolling hydrodynamic waves, which could well have been
among the probable causes that determined the catastrophic scale of the tragic event.
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Introduction

A glacial debris flow descending from any glacier can be represented either as a heterogeneous liquid or
as a water-containing solid mass moving in a mountain gorge or on a flat area (Fig. 1). The occurrence of a
glacial mudflow in the Shovi gorge on August 3, 2023 was caused by a destructive process on the Thilisa
glacier. When analyzing the probable causes of this phenomenon, the lack of sufficient observational data
seems obvious. Therefore, it is impossible to unambiguously judge the nature of the processes that took place
on this glacier over the past decades and predetermined the catastrophic event, which has tragic
consequences. Therefore, at this time, it is only possible to approximately imagine a fairly complete picture
of the spread of the mudflow along the gorge of the Bubistskali and Chanchakhi rivers, which are an integral
part of the Shovi gorge.

Glacial flow in Shovi gorge.

In any case, the movement of the glacial flow obeys the laws of hydrodynamics, in particular, the
Navier-Stokes equation. Known that, depending on the viscosity properties, the liquid medium may belong
to the usual Newtonian, or to the so-called rheological fluid (Bingham fluid). In particular, pure water is a
Newtonian fluid, but a debris flow, which is a mixture of water with solid particles and ice fragments, is
considered a suspension.
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Fig. 1. a) general view of Shovi disaster, b) debris-flow brake area in Shovi valley

Such a medium belongs to the class of viscoplastic (pseudoplastic) Bingham fluid with a characteristic
coefficient of plastic viscosity: = /10° - 10'%/ Pa.s. Unlike water, Bingham fluid always has an initial shear

stress 7o, which is in the functional dependence 1= f(3) on the deformation rate 3 = (g), where £ is the

magnitude of linear deformation. The nature of this dependence qualitatively changes from nonlinear to
linear with increasing parameter . In this case, pseudoplastic viscosity is transformed into dynamic
viscosity, i.e. Bingham fluid acquires the qualities of an ordinary Newtonian fluid. Therefore, for the shear
stress the following equation becomes valid:

T=10 + np. (1)

Among the special qualities of a Bingham fluid that distinguishes it from a Newtonian fluid, one should
highlight its ability to maintain a spatial structure after braking on a solid surface. However, the immobile
state can only last up to a certain point. It may be disrupted due to the appearance of any factor causing the
movement of the viscoplastic medium [1]. In particular, such a factor usually turns out to be an increase in
the angle of inclination of the fluid flow channel to the horizon ¢. In this case, the shear force of the
viscoplastic mass can exceed the force of surface friction with the bottom of the channel. For example,
according to information received from direct eyewitnesses of the catastrophic event in Shovi, the mudflow
in the lower part of the Shovi gorge acquired sufficient viscoplastic qualities necessary for its braking after
collapsing on the glacier Thilisa for about 20-25 minutes.

It is known that for mathematical modeling of the movement of a liquid medium, certain sets of
dimensionless hydrodynamic parameters are used, to estimate the value of which the coefficient of dynamic
viscosity of the liquid is the cornerstone characteristic. In an ordinary liquid, the coefficient of dynamic
viscosity determines the degree of turbulence of the flow, i.e. its value may vary depending on the flow
regime. In the case of a viscoplastic suspension, the dynamic viscosity coefficient is transformed into a
plastic viscosity coefficient. Consequently, until a mudflow with suspended solid particles retains the
qualities of an ordinary liquid, the distribution of the solid fraction of the mudflow along the channel of
movement will largely depend on dynamic viscosity.

Mudflow with variable rheology.
The movement of a heterogeneous fluid in a gravity field along an inclined channel approximating a
river bed is a physical analogue of the spread of a mudflow along a mountain gorge. The mathematical
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problem of studying various fluid flows is associated with solving the Navier-Stokes equation. In general,
such an operation is impossible. Therefore, simplifying assumptions that are valid for a specific problem are
usually used. This method often allows one to obtain a completely correct analytical solution, valid when
postulating certain qualities of a moving liquid medium. One of these areas of research is turbulent flows in
channels of various geometries and associated hydrodynamic instabilities that generate periodic wave
processes. It is known that waves arise in both ordinary and rheological fluids. For example, the flow of
liquid of any rheology in channels at sufficiently large angles of inclination of its bottom can become
unstable, as a result of which waves of various types can be generated. An important parameter of these
waves is their amplitude, i.e. height, which only in some special cases can be determined analytically by
solving the well-known Burgers equation [2]. However, for a general idea of the process of propagation of
waves similar to those that probably occurred in the mudflow in the Shovi gorge, one can use a more
simplified analysis based on the well-known solutions of shallow water equations [3]. In this approximation,
in the case of fluid motion in a rectangular channel, after the standard transformation of the Navier-Stokes
equations and the continuity of the medium to a dimensionless form, two similarity numbers appear: the
Reynolds number and the Froude number. These dimensionless criteria are determined using the
hydrodynamic parameters of fluid flow and the linear characteristics of the channel [4]. The Reynolds
number determines the flow regime, which for a rapid fluid flow will necessarily be turbulent. In this case, in
an ordinary liquid, depending on the value of the Froude number, various waves can be generated. In a
viscoplastic medium, which has a different rheology, wave motions can be no less diverse than in an
ordinary liquid. For example, in a mixing inhomogeneous fluid, waves arise as a result of the development of
instability due to a velocity shift in layers with different densities. A similar effect can also arise due to a
restructuring of the flow structure in a rheological fluid, when inhomogeneous layers with large velocity and
density gradients appear in it. In any case, the presence of such textures in a liquid medium allows us to
simplify the problem of mathematical modelling of waves by introducing a certain small parameter, which is
the ratio of the channel depth to the wavelength and serves as a quantitative criterion for the validity of the
shallow water approximation. Although such a model significantly simplifies the equations of
hydrodynamics, mathematical complications may arise associated with the nonlinearity of waves, the
manifestation of which obviously depends on the rheology of the liquid.

At sufficiently large Reynolds numbers, the nonstationary equations of shallow water in a one-
dimensional approximation, when moving on an inclined plane with turbulent fluid friction at the bottom of
the channel, have the form [5]

Zh+ =(hu) = 0,

% (hu) + %(/’/IFFQT?F cosg) = ghsing — C,, u”, (2)

where h, u - are the average depth and velocity of the fluid; g - acceleration of free fall force; ¢ — channel
inclination angle; C,, - is the friction coefficient, which for simplicity is considered constant. The first

equation means the continuity of the medium, the second determines the movement in an inclined channel.
After the standard transition to dimensionless variables and flow parameters, the system of equations (2)
takes the form [4]

Zh+ o (hu) = 0,
% (hu) + %(/}IL: +¥j = ah—u®> |, (3)

where o = tgp/C,,. — is the only dimensionless parameter that determines the flow. If the movement of a

uniform fluid flow in a channel with a normal depth h, is realized, then the Froude number of such a flow
will be determined by the parameter o associated with the Froude number: Fr= /e .

In the shallow water approximation, the Froude number makes it possible to classify hydrodynamic
waves, the generation of which is possible at sufficiently large Reynolds numbers, when the flow is highly
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turbulent. In particular, in the case of approximating a debris flow bed with a rectangular channel, one can
use the results of well-known analytical and numerical solutions obtained for certain types of hydrodynamic
waves. To do this, let us estimate the characteristic intervals of change in the values of the indicated
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hydrodynamic similarity numbers: Reynolds number Re=—=, where uo is the characteristic velocity value, d

g

is the channel width, #- is the kinematic viscosity coefficient; Froude number Fr:+, where ho — is the
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normal (characteristic) channel depth. It has been proven that the flow in the channel becomes unstable at Fr
> 2 (o > 4). For example, the characteristic speed of the mudflow and the parameters of the Shovi gorge:
Uo= /10-20/ms? ,d= /40-60/m, ho =/8-10/m, a=5° For water containing an admixture of solid particles,
n=~/1-10/10° m2s'. Consequently, we will have characteristic intervals of change in the indicated
dimensionless parameters of hydrodynamic similarity: Re~/4-12/ 107 and Fr=~/1-2.2/. The large Reynolds
number means that the degree of turbulation of the flow in the main part of the Shovi gorge was critically
high. It is also likely that the local value of the Froude number in some places of the gorge could go beyond
the characteristic interval, for example, due to a change in the depth of the flow or a decrease in its speed.
There is also no doubt that at times the mudflow changed its rheological properties under the influence of
various factors that actively influenced the movement of the medium. This effect could probably be
especially noticeable in the last, widest section of the gorge, where the viscous plastic nature of the mudflow
was fully appeared. In this place, the distribution of the mudflow mass was completely similar to the
movement of a viscous plastic medium with a low (=20%) water content. Particularly interesting is the
guestion of the nature of wave motions, the spectrum of which can be represented by the results of some
solutions to the shallow water equations, as well as by data from laboratory experiments [4]. In this case, the
Froude number is obviously the parameter that serves as a quantitative criterion that distinguishes
between different types of long hydrodynamic waves, the generation of which is possible in the shallow
water approximation [13]. Thus it is obvious that the generation of waves of various types is directly
dependent on the value of the Froude number. Let us consider this issue in more detail, for which we

can use the following classification:

1) 0.3 <Fr<0.5. This range of Froude number values for the case of a mudflow propagating along the
Shovi gorge is unlikely. It is more typical for a channel of finite depth, along the bottom of which a
liquid flows with a higher density than in the surface layer. It is known that with such a flow
structure in a non-uniform fluid, can be generated so-called gravitational (density) waves;

2) 0.9 <Fr< 1.1. According to the Kadomtsev-Petviashvili equation, for such Froude numbers, when
the influence of factors of linear dispersion, nonlinearity and spatial effects is balanced, the
generation of solitons (solitary waves) is possible. The probability of the existence of such a balance
necessary for the emergence of solitons, as well as the conditions necessary for the generation of
gravitational waves, is probably quite low. However, despite the stringency of the condition, it is
impossible to completely exclude the possibility of the propagation of solitons and, especially,
gravitational waves during a catastrophic phenomenon in the Shovi gorge;

3) Fr < 2. For such Froude numbers, according to the shallow water equations, as a result of the effect
of turbulent friction between the mudflow mass and the bottom of the channel is possible generation
so-called linear rolling waves. For waves of this type, the critical value is Fr=2, which determines
the threshold for the development of linear instability and a noticeable increase in the wave
amplitude;

4) Fr > 2. At a sufficiently large Fr, a nonlinear stage of increasing flow instability develops in the
liquid. This case corresponds to a certain critical depth of the channel in which the hydrodynamic
pattern of a turbulent flow arises. In highly turbulized liquids, so-called depression waves, as well as
rolling waves with hydraulic jumps, which contribute to a change in flow regime from supercritical
to subcritical;
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5) 2 < Fr < 6. In a turbulent flow, a modulation effect of traveling packets of nonlinear rolling waves,
averaged within certain spatial and temporal scales, may occur. Such a specific wave effect in the
Shovi gorge could arise in those places where there was a sharp increase in the value of the local
Froude number.
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Fig.2. rolling waves

It is obvious that among the considered waves of various types, from the point of view of
reconstructing the picture of the propagation of the mudflow in the Shovi gorge, rolling waves are of the
greatest interest. In [4], the solution to the system of equations (3), depending on the variable ¢ = x - Dt
(D - wave speed), is considered. A feature of such wave solutions is the presence of a smooth section of
the wave trajectory, indicating the transition between subcritical flow and supercritical flow (sections 2,
1 in Fig. 2a). This site is determined relative to the coordinate system moving at wave speed D and
indicates the presence of a hydraulic jump (section 3 in Fig. 2a), which converts the supercritical flow
into a subcritical one. Therefore, an important parameter characterizing rolling waves is their critical
depth y, at which the determinant of the system of equations (3): A= h — (u — D), becomes zero.

Hence, whenh =y, u = u.when the condition is
ﬂ,c=}r—[uc _D]: =0 (4)

the equations of stationary waves take the form

h(u - D) = y(uc- D),
8 .. - 5 RE ”
a—g{_h{_u—ﬂ}-+?)—arh—u- =F. (5)
Of physical interest are waves propagating to the right (D > u > 0). In the vicinity of the critical depth, the

determinant (A) changes sign ( site 4 on Fig. 2,b). A necessary condition for the existence of a continuous
solution to the second of equations (5) is that the right-hand side vanishesath =y

ay = u® (6)

Due to condition (4), (6) as well as the condition D >, the following expressions are valid

u,=Jay | D=yY2(1+va), wu=D—-y¥2/h=y¥2(1+Ja—-1/z (M
From expression (5) it follows that the value %_ is a function of the variable z, where z= hly.
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Thus, in a coordinate system moving with speed D, the flow downstream from the critical point should be
supercritical (A < 0), and upstream - subcritical (A > 0). This requirement follows from the stability
conditions of a hydraulic jump that transforms a supercritical flow into a subcritical one.
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Fig.3. results of numerical calculations on the evolution of a rolling wave packet

As an example of what can happen to a wave packet as the Froude number increases, we can use the result of
numerical simulation. Figure 3 corresponds to the theoretical picture of the evolution of a packet of
modulated rolling waves when Fr=5. According to a computer experiment, the generation of waves in a flow
of inhomogeneous fluid occurred as a result of a nonlinear increase in small disturbances, the initial
amplitude of which was ~1% of the normal channel depth hy. The maximum amplitudes that were recorded
in the corresponding laboratory experiment turned out to be significantly less than the theoretical ones [4].
Nevertheless, the qualitative nature of the growth in the amplitude of the wave packet, which initially had an
exponential character, was confirmed. However, after the traveling wave passed a certain distance, the
increase in amplitude stopped. It turned out that for a developed turbulent flow the average values of the

minimum depths satisfy the inequality: xhﬁ =10. It is believed that Small disturbances grow exponentially
o

along the channel until the wave parameters reach the boundary of the hyperbolicity region of the system of
shallow water equations, after which the growth of the wave amplitude stops and the flow becomes
quasiperiodic. The thick lines show the distribution of the average values of the maximum and minimum
wave depths along the channel over many periods. Note that the average values of the minimum wave depth
in a developed flow, determined in a laboratory experiment and as a result of non-stationary numerical
calculations, are in good agreement. At that time, the corresponding experimental values of the maximum
amplitude turned out to be significantly less than the analytically determined theoretical amplitudes.
Therefore, it was concluded that equations (1) do not convey the true structure of waves during their
breaking, i.e. in case of hydraulic jumps.

Conclusion

Thus, during the propagation of the mudflow in the gorge of the Bubistskali and Chanchakhi rivers,
which are an integral part of the Shovi gorge, hydrodynamic waves of various types could exist. In the range
of values of the Froude hydrodynamic similarity number corresponding to the mudflow bed in the Shovi
Gorge, the generation of traveling rolling waves, the height of which could reach several meters, should be
considered most likely. The appearance of solitary waves (solitons), as well as the so-called gravitational
waves were unlikely, but the possibility of their generation in places where local conditions were suitable
cannot be ruled out. In the lower, widest section of the Shovi gorge, in the so-called zone cottages, the
movement of the mudflow mass was hydrodynamically similar to the movement of the ice mudflow in the
gorge of the Genaldon River, which occurred after the collapse on the Kolka glacier in 2002 [6]. In
particular, despite the huge difference in the initial volumes of glacial mudflows that descended from the
Thilisa and Kolka glaciers, the thickness of viscous plastic sediments in the last flat areas of their
distribution, taking into account the difference in covered areas, turned out to be comparable. Obviously, this
is due to the same type of braking of the viscoplastic debris flow at the stage of its final stop, which is also
indicated by a decrease in wave amplitudes within /1-3/ m (Fig.1b)
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(Lgomzgem) 3000MM©E0b53039MO Boermgdols foMdmddbols
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. 3909gerody, b. 35653530¢m0
9Bomdg

2023 Heools 3 5330LGH™b dmgol bgmdsdo dyobgzstrmwo M35MEMAoL asBgbs Mmdowolols 34obzsm by
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239X9090990 B0ssol Folol, MgMEmyoMe M30L9090Mb 35380MYdom. sBg39 TglodegdgEOs
ObMgdom  Fgx3sbogl  bb3oslbgs GHodol 30MMmE0bsdolzemo  GHowmgdol 3565993 Mgd0,
OHmdgms FoMdmgdbs, Log5MEME, TGbodEgdgwo 0gm M35MOEMBME0 653501 A93M(39gdoL
©OML. OEYMOE BBL, sbgmo 3OMdEYIs ©8353059MBOGOESE FJ0dwgds AdIHYwIL dbmemo
0350305370 65350000 MQs6DmIowgdosbo 300EgMH0Tgdol 3603369 mdgdoL Lim®mo Tgz3slgdols
39000b393580, M3 BmbobgMbgdgwo MomgbmdMozo Fobslinsmgdwrgdos, MMIwgdos 9356 EH039dL
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99Rbgm0  fiyeol Bosbmgdolsl, Ls385Mm0LsE OO MmgobmwELol ®osbzgdol dgdmbgzgzsdo,
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30000Mm©06530309600 ool FoMdmddbol 99w09a9©. “YMYmBomo 9x39IEJO0, MMIGdO3
bdoMmo b bWzl  GHoweMo  FJIBMmNYdIOOL o3 E3gEgdol  3MMmEILL,  ofows®
©59M30009005 58 BHO®gdol 3H03gd0bg. 930@™3 dmz0l bgmdsdo M3sMHEMAoL d9dmbggzsdo
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K Bonpocy 0 BO3BHHKHOBEHHH T'MJIPOAHHAMMYECKUX BOJIH B yIIIeJIbe
IloBu (I'py3us) B pe3yabTaTe 00BaJa JeaHuka Tounamnca

3. Kepeceanaze, H. BapamamBuian

Pe3rome

BozauknaoBenmue rismuaneHOM cenu B ymenbe llloBm 3.08.2023 roga OBLIO BBI3BAHO Pa3pyIIATEITHHBIM
nporeccoM Ha jenHuke ToOunuca. [lo mmeromeiics KapTUHE PacHpOCTpPaHEHHs CeEJisi, MOKHO HPOBECTH
aHaJIM3 OTHOCHUTEIHHO PEOJIOTHYECKHX KAaueCTB BOJIOHACHIIIEHHOW I'PYHTOBOW Macchl, COCTABISIOLIEH ero
OCHOBY. MOXHO Tarke NPUOIM3UTENBHO OLIGHUTHh MapaMeTpbl Pa3IUYHBIX TUIOB T'HAPOIUHAMUYECKUX
BOJIH, T€HEpalysl KOTOPHIX BEPOSITHO ObUIa BO3MOXHA B IIPOLIECCE PACIPOCTPAHEHUS! CEJIEBOIO IMOTOKA.
[Ipencrasisiercs, 4To Takas 3a/a4a MOXeET OBbITh YJOBJIETBOPUTEIHHO PElIeHa TOJIBKO B Cllydyae KOPPEKTHON
OLIEHKM BEJIWYMH Oe3pa3MEpHBIX KPUTEPUEB TEUCHHS CEJIEBOM MacChl, SBIAIOLIMXCS YIOOHBIMH
KOJIMYECTBEHHBIMH XapaKTEPUCTUKAMH, YIPOIIAOIMMY  aHAIW3 KaueCTBEHHBIX CIEICTBUIl MPUMEHEHUS
MPUHIMIA THAPOIMHAMUYECKOTO mono0usi. HampuMmep, B ciiyyae anmpoKCHMAIMKM PYCiia CEJIEBOTO MOTOKA
MMPpAMOYTOJIBHBIM KaHaJIOM, MOKHO BOCITIOJIB30BaTHCA PE3yJibTaTaMH H3BECTHBIX aHAJIUTHYCCKHUX peHIeHI/II‘/'I,
MOJIyYEHHHHBIX MPH YIPOLIAIOIINWX JOMYIIEHUAX, CIPABEUIMBBIX M ONPEICICHHBIX HHTEPBAJIOB
M3MEHEHUs uncen noaodus Pelinonbaca u ®pyna. B yacTHOCTH, B PUOIMIKEHUH MEJIKOM BOJBI, B Cllydae
JIOCTaTOuHO OoybIIMX 4Yucen PeifHonmbica, Korjia MOTOK >KWUAKOCTH SIBJISIETCS CHIIBHO TYpOYJIEHTHBIM,
napamerp Ppyaa MO3BOJIAET AOCTATOYHO KOPPEKTHO MOJEIUPOBATh W3MEHEHHs pEXUMa TEUEHHS,
MIPOUCXOSAIINE B CIEACTBHE N€HEpAllMU TMIPOJUHAMUYECKHX BOJIH. OT THIAa 3THUX BOJH B 3HAYHUTEIBHON
CTETIEHH 3aBHUCST HEraTHUBHBIC A(PPEKTHI, YACTO COMPOBOXKAAIOININE MPOIECC PAcIpOCTPAHEHUS! BOJHOBBIX
BosMymieHuil. Iloatomy, B ciyuae ceneBoro moroka B yuienuu llloBu, BrosHe peanbHOM mpencTaBiseTcs,
HalpuMep, TeHepalys T.H. KaTSIuXcd TMIPOAVMHAMHUYECKHX BOJH, KOTOpBIE BIIOJIHE MOIJIM OKa3aThCs
Cpey BEPOSITHBIX IPUYUH, ONPEACIUBIINX KaTaCTPOYUISCKUE MACIITAOBI TPArHIECKOTO COOBITHSL.

KuroueBble ci10Ba: JIETHUK, CEIEBOM MOTOK, THMIPOJUHAMUYECKUE BOJIHBI, 4Hcio PeiHOnbACA, 4HCIIO
®pyna.
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