M9 Tohoku earthquake response in Georgia – possible local tremors and hydroseismic effects

Main Article Content

T. Chelidze
I. Shengelia
N. Zhukova
T. Matcharashvili
G. Melikadze
G. Kobzev

Abstract

Presently, there are a lot of observations on the significant impact of strong remote earthquakes on underground water and local seismicity regimeы (so called nonvolcanic or dynamical tremors). On the other side, teleseismic wave trains give rise to several hydraulic effects in boreholes, namely water level oscillations, which mimic seismograms (hydroseismograms). Both these effects are closely related to each other as one of main factors reducing local strength of rocks is the pore pressure of fluids. Some evidence of possible dynamic triggering from great Tohoku (M9) earthquake has been obtained recently in the West Caucasus. Besides tremors, clear identical anomalies on the large part of territory of Georgia from Borjomi to Kobuleti in the borehole water levels has been observed at passing S- and Love-Rayleigh teleseismic waves of Tohoku earthquake. We presume that coincidence of possible tremor signal with water level anomaly (oscillation) makes much more reliable event classification as a triggered one. We also report a new observation on water level oscillations during passage of multiple surface Rayleigh waves.

Published: Mar 26, 2015

Article Details

How to Cite
Chelidze, T., Shengelia, I., Zhukova, N., Matcharashvili, T., Melikadze, G., & Kobzev, G. (2015). M9 Tohoku earthquake response in Georgia – possible local tremors and hydroseismic effects. Journals of Georgian Geophysical Society, 17(A). Retrieved from https://ggs.openjournals.ge/index.php/GGS/article/view/1622
Section
Articles

References

1. Bormann, P. (Ed.) (2012). New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ German Research Centre for Geosciences, Potsdam; http://nmsop.gfz-potsdam.de;

2. Brodsky, E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M. (2003). A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 108, B8, 2390, doi:10.1029/2002JB002321,

3. Chao, K., Z. Peng, C. Wu, C.-C. Tang, and C.-H. Lin (2012). Remote triggering of non-volcanic tremor around Taiwan, Geophys. J. Int. 188,no. 1, 301–324, doi: 10.1111/j.1365-246X.2011.05261.x.

4. Chao, K., Peng Z. Gonzalez-Huizar, H., Aiken, Ch., Enescu, B., Kao, H.,. Velasco, A.,

5. Obara, K. and Matsuzawa, T. (2013), A global Search for triggered tremor following the 2011 Mw9.0 Tohoku earthquake. Bull. Seis. Soc. America, 103, 1551-1571, doi: 10.1785/0120120171

6. Chelidze, T., Matcharashvili, T., Lursmanashvili, O., Varamashvili, N., Zhukova, N. and Meparidze, E. (2010). Triggering and Synchronization of Stick-Slip: Experiments on Spring-Slider System. In: Synchronization and Triggering: from Fracture to Earthquake Processes. Eds. V.de Rubeis, Z. Czechowski, R. Teisseyre, pp.123-164.

T. Chelidze and T. Matcharashvili. (2013). Triggering and Synchronization of Seismicity: Laboratory and Field Data - a Review. In: Earthquakes – Triggers, Environmental Impact and Potential Hazards. (Ed. K. Konstantinou), Nova Science Pub. Pp. 165- 231.

7. T. Chelidze and T. Matcharashvili, (2014). Dynamical Patterns in Seismology. In: Recurrence Quantification Analysis: Theory and best practices. (Eds. C.Webber and N.Marwan). Springer Cham Heidelberg, pp. 291-335.

8. Chelidze, T., Zhukova, N., Matcharashvili, T. 2014. SEISMOTOOL – an easy way to see, listen, analyze seismograms. Seismol. Res. Letters. 85, 889-895.

9. T. Chelidze, I. Shengelia, N. Zhukova, T. Matcharashvili, G. Melikadze, G. Kobzev. (2014). Coupling of Multiple Rayleigh Waves and Water Level Signals during 2011 Great Tohoku Earthquake observed in Georgia, Caucasus, Bull. of the Georgian National Academy of Sciences. v. 8, no. 2, 76- 79.

10. Costain, J. and Bollinger, J. (2010). Review: Research results in Hydroseismicity from 1987 to 2009. Bull. Seismol. Soc. Am. 100, 1841-1858, doi: 10.1785/0120090288.

11. Gonzalez-Huizar, H., Velasco, A., Peng, Zh. and Castro, R. (2012). Remote triggered seismicity caused by the 2011, M9.0 Tohoku-Oki, Japan earthquake. Geophys. Res. Letters.39, L10302, doi: 10.1029/2012GL051015.

12. Hill, D. and Prejean, S. (2009). Dynamic triggering. In: Earthquake Seismology. Ed. H. Kanamori. Elsevier. pp. 257-293.

13. Hill, D., Peng Zh., Shelly, D., and Ch. Aiken. (2013). S-Wave Triggering of Tremor beneath the Parkfield, California, Section of the San Andreas Fault by the 2011 Tohoku, Japan, Earthquake: Observations and Theory. Bull. Seis. Soc. America, 103, 1541–1550.

14. Obara, K. and Matsuzawa, T. (2013). A Global Search for Triggered Tremor Following the 2011 Mw 9.0 Tohoku Earthquake. Bull. Seismol. Soc. Am., 103, 1551–1571.

Parsons, T., Segou, M., Marzocchi, W., (2014). The global aftershock zone. Tectonophysics. 18, 1–3.

15. Peng, Z., Wu, C. and Aiken C. (2011). Delayed triggering of microearthquakes by multiple surface waves circling the Earth, Geophys. Res. Lett., 38, L04306, doi:10.1029/2010GL046373.

16. Prejean, S. and Hill, D. (2009).Dynamic triggering of earthquakes. In: Encyclopedia of Complexity and Systems Science, R. A. Meyers (Ed.), Springer, pp. 2600-2621.

17. Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969-1982. J. Geophys. Res., 90, 5479-5495.

18. Tary, J. B., van der Baan, M. and Eaton, D. W. (2014). Interpretation of resonance frequencies recorded during hydraulic fracturing treatments. J. Geophys. Res. Solid Earth, 119. doi:10.1002/2013JB010904.doi:10.1002/2013JB010904.

19. Wang, C.-Y., Chia, Y, Wang, P-L., Dreger, D. (2009). Role of S waves and Love waves in coseismic permeability enhancement. Geoph. Res. Lett. 36, L09404, doi:10.1029/2009GL037330.

20. Wang, C.-Y., Manga, M. (2010). Earthquakes and Water. Springer-Verlag Berlin Heidelberg.

21. Zhang, Y. and Huang, F. (2011). Mechanism of Different Coseismic Water-Level Changes in Wells with similar Epicentral Distances in Intermediate Field. Bull. Seis. Soc. America, 101, 1531-1541.