Study of Georgian Natural Waters Thermodynamic Parameters Behavior by Means of Original Fluids Bubble Boiling Method

Main Article Content

Anzor I. Gvelesiani
Nodar G. Chiabrishvili

Abstract

Some years ago the authors suggested new fluids bubble boiling method (BBM) for modeling vertical convection processes having place in the geospheres. Then they were developed in our recent articles for artificial solutions and analyzed by means of T (t), ΔS (T), and T (ρ) experimental curves for definition of admixture of the mass content density of any solution or natural waters. In suggested article, luckily, were obtained optimal values of the liquid volume, the heating intensity, and temperature measurement frequency at any solution concentration allowed us, without waste of time and any trouble, to work out the original method BBM for modeling of above mentioned geophysical convective motions in the laboratory conditions and provide at that stage the planned experiments. Thus, it was investigated: the regimes of heating, the first smallest air-vapour micro-bubbles (d ≈ 10-2 cm), then macro-bubbles (d ≈ 2 ∙ 10-1 cm) boiling before the end of experiments (T = Tmax = T ≥  100 0C). The experimental curves showed clearly the succession of the regimes: (1) thermal (T0 = 10 0С < T < T1 = 40 0С); (2) microscale bubbles (T ≤ T1 = 40 0C); (3) macroscale bubbles (T ≤ T2 = 80 0C); (4) intensive, in the form of some winding vertical bubble-chains (80 0C < T ≤ T3 = 100 0C); (5) bubble-projectile (T ≥ T3 = 100 0C ). To the end of experiments, mean value of loss of liquid mass was equal to about 10 % of the whole mass.                                                                                                                                At last, it was constructed universal experimental curves, connecting the values of parameters of the liquids at the points of the boiling regimes, changed and obtained three linear curves T (t), ΔS (T), and T (ρ), and sinusoidal ΔT (Δt) one for natural waters of Georgia and artificial chemical matter solutions of any density at the points of the regime break.

Unlike the Nu-Ra case, our BBM allows to experimenter for short time to determine main thermodynamic parameters, avoid technical difficulties of preparation, and carry out measuring, especially near the breaking points of the regimes, and recommend it to corresponding physical-chemical laboratories.                                                        
Keywords:
vertical convection, incipience, one-dimensional, two-phase flow, temperature, entropy, points of discontinuity, Archimedes force, bubble boiling, vapour, beaker.
Published: Jul 22, 2016

Article Details

How to Cite
Gvelesiani, A. I., & Chiabrishvili, N. G. (2016). Study of Georgian Natural Waters Thermodynamic Parameters Behavior by Means of Original Fluids Bubble Boiling Method. Journals of Georgian Geophysical Society, 18(19). Retrieved from https://ggs.openjournals.ge/index.php/GGS/article/view/1749
Section
Articles

References

Thomson J. T. On a changing tesselated structure in certain liquids. Proc. Philos. Soc. Glasgow, 1882, v. 13, pp. 464-468.

Bénard M. Les Tourbillons cellulaires dans une nappe liquide. Revue générale des Sciences pures et applequées, 1900, v. 11, pp. 1261-71 and 1309-28.

Bénard M. Les Tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Annales de Chimie et de Physique. 1901, v. 23, pp. 62- 144.

Rayleigh O. M. On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. and J. Sci., 1916, v. 32, N192, pp. 529-546.

Nukiyama S. J. Soc. Mech. Engs. (Japan), 1934, v. 37, 367 p.

Schmidt R. J., Milverton S. W. On the instability of a fluid when heated from below. Proc. Roy. Soc. (London) A, 1935, v. 152, pp. 586-594.

Jacob M. Heat Transfer. Vol. I, Chapter 29. Wiley, New York, 1940.

Frenkel Ya. I. Kinetic theory of liquids. M.: Pr. AN SSSR, 1945, 592 p.

Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford, England, 1961, 652 p.

Leppert L., Pitts K. Boiling. In book: Advances in Heat Transfer, v. 1, AP 1964 (Ed. by T. F. Irvine, Jr., J. P. Hartnett), Academic Press, New York–London, pp. 142-198 (Russian, M.: Atomizdat, 1967, 336 p.)

Shekriladze I. G. On the role of “pumping effect” of growing vapor bubble on the wall at bubble boiling process. In book: Problems of convective heat transfer and purity of the water vapour. Tbilisi: Metsniereba, 1970, pp. 90-97.

Bennett C. O., Myers J. E. Momentum, Heat and Mass Transfer. McGraw Hill Book Company, New York-London-Toronto, 1962. (Russian ed. M.: Mir, 1966, 726 p.)

Wallis G. B. One-dimensional two-phase flow. McGraw Hill Book Company, New York- San Louis-San Francisko-London- Sydney-Toronto-Mexico-Panama, 1970. (Russian ed. M.: Mir, 1972, 440 p.)

Ermakov G. V., Lipnyagov E. V., Perminov C. A. New criterion for comparison of a classic theory of nucleation in the saturated liquids with the experimental data. Teplofizika i aeromekhanika. 2009, t. 16, № 4б, pp. 695699.

Golitsyn G. S. Energy of convection. Non-linear waves: Stochasticity and Turbulence. Gorky: AN SSSR, IPF, 1980, pp. 131-139.

Boubnov B. M., Golitsyn G. S. Experimental study of convection structures in a rotating fluids. J. Fluid Mech., 1990, v. 219, pp. 215-239.

Boubnov B. M., Golitsyn G. S. Temperature and velocity field regime of convective motions in a rotating plane fluid layer. J. Fluid Mech., 1990, v. 219, pp. 215-239.

Boubnov B. M., Golitsyn G. S. Convection in rotating fluids. J. Fluid Mech., 1995, v. 219, pp. 215-239.

Brennen Chr. E. Cavitation and bubble dynamics. Oxford University Press,1995,64 p.

Dergarabedian P. The rate of growth of vapor bubbles in superheated water. ASME J. Appl.Mech. 1953, v. 20, pp. 537-545.

Geguzin Ya. E. Bubbles. M.: Nauka, GRFMLIT, 1985, 176 p. (Bibl. “Kvant”. Vyp. 46). 1988, 160 P. (Bibliotechka “Kvant”. Vyp. 63).

Ozawa H., Ohmura A., Lorenz R. D., Pujol T. The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle. Rev. Geophys., 41(4), 1018, doi: 10.1029/2002RG000113, 2003.

Kirjanov A. P., Korshunov S. M. Thermodynamics and molecular physics. M.: Prosveshchenie, 1977, 160 p.

Pounder E. R. The Physics of Ice. Pergamon Press. Oxford-London-Edinburgh-New York- Paris-Frankfurt, 1967 (In Russian, M.: Mir, 190 p.)

Gvelesiani A. On the one-dimensional two-phase/many-component convective flows J. Georgian Geophys. Soc., 2013, v.16B, pp. 119-128.

Gvelesiani A., Chiabrishvili N. Laboratory modeling of thermals generation in geophysical environments by means of fluid bubble boiling method. J. Georgian Geophys. Soc., v.16B, 2013, pp. 129-137.

Gvelesiani A., Chiabrishvili N. Additional experiments about investigation of the peculiarities of the bubble boiling of clear water, H2O, and sugar, С12Н22О11, and edible salt, NaCl, water solutions of different densities. J. Georgian Geophys. Soc., 2014, v.17A, pp. 132-139.

Gvelesiani A. Open thermodynamic systems: some new aspects of convection processes modeling by fluids bubble boiling laboratory method. J. Georgian Geophys. Soc., 2014, v. 17B, pp. 38-57.

Sounders F. A. A Survey of Physics for college students. Third edition. New York, Henry Holt and Company, 1943, 724 p. (p. 183)

Debenedetti P. G. Metastable Liquids.Princeton Univ. Press, Princeton, N. J., 1996.

Rundle J. B. et al. Statistical physics approach to understading the multiscale dynamics of earthquake fault systems. Rev. Geophys., 41(4), 1019, doi: 10.1029/2003RG000135, 2003. [32] Shimokawa S., Ozawa H. On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy production. Q. J. R. Meteorol. Soc., 2002, v. 128, pp. 2115-2128.