თბილისში COVID-19-ის გავრცელებაზე ზოგიერთი მარტივი თერმული ინდექსის გავლენის კვლევის წინასწარი შედეგები

Main Article Content

ა. ამირანაშვილი
ნ. ჯაფარიძე
ლ. ქართველიშვილი
ქ. ხაზარაძე ხაზარაძე
ა. რევიშვილი

ანოტაცია

წარმოდგენილია  მარტივი თერმული ინდექსების ცალკეული კომპონენტების დღე-ღამური მნიშვნელობების (ტემპერატურა და ფარდობითი ტენიანობა, ქარის სიჩქარე)  თბილისის მოსახლეობის კორონავირუსით ინფიცირების დადებითობის მაჩვენებელზე COVID-19 (IR) გავლენის კვლევის შედეგები 2020 წლის 1 სექტემბრიდან  2021 წლის 31 მაისამდე. მიღებულია, რომ IR მნიშვნელობები საპირისპირო კორელაციაშია ჰაერის ტემპერატურასა და ქარის სიჩქარესთან და დადებითად არის დაკავშირებული ჰაერის ფარდობით ტენიანობასთან.


შესწავლილი იქნა ოთხი განსხვავებული თერმული ინდექსის (ჰაერის ეფექტური  ტემპერატურა და Wet-Bulb-Globe-Temperature) გავლენა IR მნიშვნელობებზე, რომლებიც გასაშუალებული არის მათი კატეგორიების მასშტაბის დიაპაზონში. აღმოჩნდა, რომ ჰაერის ეფექტური ტემპერატურის ზრდა იწვევს IR მნიშვნელობების შემცირებას. ამ უკანასკნელ შემთხვევაში, თერმულ ინდექსებსა და IR მნიშვნელობებს შორის ურთიერთკავშირის  ნიშნადობის  დონე გაცილებით მაღალია, ვიდრე IR -სა და ამ ინდექსების ცალკეულ კომპონენტებს შორის ურთიერკავშირის შემთხვევაში.

საკვანძო სიტყვები:
ბიოკლიმატური ინდექსი, ჰაერის ეფექტური ტემპერატურა, მეტეოროლოგიური პარამეტრები, СOVID-19, დადებითობის მაჩვენებელი.
გამოქვეყნებული: Dec 13, 2022

Article Details

როგორ უნდა ციტირება
ამირანაშვილი ა. ., ჯაფარიძე ნ. ., ქართველიშვილი ლ. ., ხაზარაძე ქ. ხ., & რევიშვილი ა. . (2022). თბილისში COVID-19-ის გავრცელებაზე ზოგიერთი მარტივი თერმული ინდექსის გავლენის კვლევის წინასწარი შედეგები. საქართველოს გეოფიზიკური საზოგადოების ჟურნალი, 25(2). https://doi.org/10.48614/ggs2520225961
სექცია
სტატიები

წყაროები

World Health Organization. Coronavirus Disease 2019 (‎COVID-19)‎. Situation report. 67, 2020.

Covid-19 Georgia. COVID-19 Report of the National Center for Disease Control &Public Health, 2020-2022. The 9th Revision. 163 p., 2022, (in Georgian). http://test.ncdc.ge/Handlers/GetFile.ashx?ID=c6c26041-e123-4591-b1c6-50103eb5205f

Amiranashvili A.G, Khazaradze K.R, Japaridze N.D. Twenty weeks of the pandemic of coronavirus Covid-19 in Georgia and neighboring countries (Armenia, Azerbaijan, Turkey, Russia). Preliminary comparative statistical data analysis. Int. Sc. Conf. „Modern Problems of Ecology“, Proc., ISSN 1512-1976, v. 7, Tbilisi-Telavi, Georgia, 26-28 September, 2020, pp. 364-370.

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. Analysis of twenty-week time-series of confirmed cases of New Coronavirus COVID-19 and their simple short-term prediction for Georgia and neighboring countries (Armenia, Azerbaijan, Turkey, Russia) in amid of a global pandemic. medRxiv preprint doi: https://doi.org/10.1101/2020.09.09.20191494, 2020, 13 p. Europe PMC, https://europepmc.org/article/ppr/ppr213467

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. The Statistical Analysis of Daily Data Associated with Different Parameters of the New Coronavirus COVID-19 Pandemic in Georgia and their Short-Term Interval Prediction from September 2020 to February 2021. medRxiv preprint doi: https://doi.org/10.1101/2021.04.01.21254448, 2021, 18 p.

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. The Statistical Analysis of Daily Data Associated with Different Parameters of the New Coronavirus COVID-19 Pandemic in Georgia and their Short-Term Interval Prediction in Spring 2021. medRxiv preprint doi: https://doi.org/10.1101/2021.06.16.21259038, 2021.

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. The Statistical Analysis of Daily Data Associated with Different Parameters of the New Coronavirus COVID-19 Pandemic in Georgia and their Two-Week Interval Prediction in Summer 2021. medRxiv preprint, 2021, doi: https://doi.org/10.1101/2021.09.08.21263265, 2021, 20 p.

Amiranashvili A., Khazaradze K., Japaridze N., Revishvili A. Analysis of the Short-Term Forecast of Covid-19 Related Confirmed Cases, Deaths Cases and Infection Rates in Georgia from September 2020 to October 2021. InternationalScientificConference „Natural Disasters in the 21st Century: Monitoring, Prevention, Mitigation“. Proceedings, ISBN 978-9941-491-52-8, Tbilisi, Georgia, December 20-22, 2021. Publish House of Iv. Javakhishvili Tbilisi State University, Tbilisi, 2021, pp. 167 - 171.

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. The Statistical Analysis of Daily Data Associated with Different Parameters of the New Coronavirus COVID-19 Pandemic in Georgia and their Monthly Interval Prediction from September 1, 2021 to December 31, 2021. 22 p. Europe PMC plus. Preprint from medRxiv, 16 Jan 2022, DOI: 10.1101/2022.01.16.22269373, PPR: PPR443384

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. The statistical analysis of daily data associated with different parameters of the New Coronavirus COVID-19 pandemic in Georgia and their monthly interval prediction from January 1, 2022 to March 31, 2022. 20 p. Preprint from medRxiv, 21Apr 2022, medRxiv 2022.04.19.22274044; doi: https://doi.org/10.1101/2022.04.19.22274044

Fatimah B., Aggarwal P., Singh P. Gupta A. (2022). A Comparative Study for Predictive Monitoring of COVID-19 Pandemic. Applied Soft Computing. doi: https://doi.org/10.1016/j.asoc.2022.108806, 2022, 43 p.

Kathleen C. M. de Carvalho, João Paulo Vicente, João Paulo Teixeira. COVID-19 Time Series Forecasting – Twenty Days Ahead. Procedia Computer Science, 196, 2022, pp. 1021–1027, https://creativecommons.org/licenses/by-nc-nd/4.0

Martin Drews, Pavan Kumar, Ram Kumar Singh, Manuel De La Sen, Sati Shankar Singh, Ajai Kumar Pandey, Manoj Kumar, Meenu Rani, Prashant Kumar Srivastava. Model-Based Ensembles: Lessons Learned from Retrospective Analysis of COVID-19 Infection Forecasts Across 10 Countries. Science of the Total Environment, 806, 150639, 2022, 10 p., https://doi.org/10.1016/j.scitotenv.2021.150639

Amiranashvili A.G., Khazaradze K.R., Japaridze N.D. Comparative Analysis of Reported Deaths Cases Associated with the New Coronavirus COVID-19 Pandemic in the South Caucasus Countries (Armenia,Azerbaijan, Georgia) from March 2020 to May 2022. medRxiv 2022.04.19.22274044; doi: https://doi.org/10.1101/2022.04.19.22274044

Sahin M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ 728:138810, 2020.

Nottmeyer L.N., Sera F. Influence of temperature, and of relative and absolute humidity on COVID-19 incidence in England - A multi-city time-series study. Environ. Res. 196: 110977, 2021

Islam A. The Effect of Weather Pattern on the Second Wave of Coronavirus: A cross study between cold and tropical climates of France, Italy, Colombia, and Brazil. medRxiv preprint doi: https://doi.org/10.1101/2021.12.28.21268496, 2021

Wang J., Tang K., Feng K., Lin X., Lv W., et al. Impact of temperature and relative humidity on the transmission of COVID-19: a modelling study in China and the United States. BMJ, 11(2): e043863, 2021.

Ceylan Z. Insights into the relationship between weather parameters and COVID-19 outbreak in Lombardy, Italy. International Journal of Healthcare Management. 14(1), 2021, pp. 255-263.

Abdullrahman M. The effect of meteorological conditions on the spread of COVID-19 cases in six major cities in Saudi Arabia. J. Comm. Med. and Pub. Health. Rep., ISSN: 2692-9899, 3(01), 2022, 6 p. https://doi.org/10.38207/JCMPHR/2022/FEB/03010410

Haga L., Ruuhela R., Auranen K., Lakkala K., Heikkilä A., Gregow H. Impact of Selected Meteorological Factors on COVID-19 Incidence in Southern Finland during 2020–2021. Int. J. Environ. Res. Public Health. 19, 13398, 2022. https:// doi.org/10.3390/ijerph192013398

Landsberg H.E. The Assessment of Human Bioclimate. A Limited Review of Physical Parameters. Technical Note No 123, WMO, No 331, 1972, 37 p.

BSR/ASHRAE Standard 55P, Thermal Environmental Conditions for Human Occupancy 2/24/03 Most Current Draft Standard, 2003, 50 p.

Tkachuk S.V. Comparative Analysis of Bioclimatic Indexes for Prediction Using a Mesoscale Model. Uchenie Zapiski Rossiiskogo Gosudarstvennogo Gidrometeorologicheskogo Universiteta, No 20, 2011, pp. 109-118, (in Russian), http://weatherlab.ru/sites/default/files/library/Sravn_ind.pdf

Freitas C. R., Grigorieva E. A. A Comprehensive Catalogue and Classification of Human Thermal Climate Indices. Int J Biometeorol , 59, 2015, pp. 109–120, DOI 10.1007/s00484-014-0819-3

Amiranashvili A.G., Japaridze N.D., Khazaradze K.R. On the Connection of Monthly Mean of Some Simple Thermal Indices and Tourism Climate Index with the Mortality of the Population of Tbilisi City Apropos of Cardiovascular Diseases. Journal of the Georgian Geophysical Society, ISSN: 1512-1127, Physics of Solid Earth, Atmosphere, Ocean and Space Plasma, v. 21(1), Tbilisi, 2018, pp .48 -62. http://www.jl.tsu.ge/index.php/GGS/article/view/2489

Amiranashvili A., Danelia R., Mirianashvli K., Nodia A., Khazaradze K.,Khurodze T., Chikhladze V. On the Applicability of the Scale of Air Equivalent-Effective Temperature in the Conditions of Tbilisi City.Trans. of M. Nodia Institute of Geophysics, v. LXII, ISSN 1512-1135, Tbilisi, 2010, pp. 216-220, (in Russian).

Sheleykhovski G.V. Mikroklimat yuzhnykh gorodov, M., 1948, 118 s.

Houghton F.C., Yagloglou C.P. Determination of the Comfort Zone. ASHVE, Transactions, 29, 1923, 361.

Missenard F.A. Température effective d’une Atmosphere Généralisation Températurerés ultante d’un Milieu. Encyclopédie in dustrielleet Commerciale, Etude physiologique et technique de la ventilation. Librerie de l’Enseignement Technique, Paris, 1933, 131-18.

Houghton F.C., Vagloglou C.P. Determining Lines of Equal Comfort. J. Amer. Soc. Heat. And Ventilating Engineers, Vol. 29, 1923, pp. 165-176.

Missenard A. L’ Homme et le Climat, Paris, 1937, 186 p.

Auer I., Bogner M., Hammer N., Koch E., Rudel E., Svabik O., Vielhaber C.H. Das Bioklima von Gmunden, Zentralanstalt für Meteorologie und Geodynamik Wie, 1990.

Yaglou C.P., Minard D. Control of Heat Casualties at Military Training Centers. Am MED Assoc Arch IND Health, 1957, 16:302–316.