Evolution of weather forming ULF electromagnetic structures in the ionospheric shear flows

Main Article Content

G. Aburjania
Kh. Chargazia
O. Kharshiladze
G. Zimbardo

Abstract

This work is devoted to study of transient growth and further linear and nonlinear dynamics of planetary electromagnetic (EM) ultra-low-frequency internal waves (ULFW) in the rotating dissipative ionosphere due to non-normal mechanism, stipulated by presence of inhomogeneous zonal wind (shear flow). Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. An effective linear mechanism responsible for the generation and transient intensification of large scale EM ULF waves in the shear flow is found. It has been shown that the shear flow driven wave perturbations effectively extract energy of the shear flow and temporally algebraic increasing own amplitude and energy (by several orders). With amplitude growth the nonlinear mechanism of self-localization is turned on and these perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation’s front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortex structures transfer the trapped particles of medium and also energy and heat. Thus the structures under study may represent the ULF electromagnetic wave macro turbulence structural element in the ionosphere.

Keywords:
ULF electromagnetic wave, Inhomogeneous geomagnetic field, Shear flow, non-modal approach, Nonlinear solitary vortex structures.
Published: Aug 11, 2014

Article Details

How to Cite
Aburjania, G., Chargazia, K., Kharshiladze, O., & Zimbardo, G. (2014). Evolution of weather forming ULF electromagnetic structures in the ionospheric shear flows. Journals of Georgian Geophysical Society, 16, 89–110. Retrieved from https://ggs.openjournals.ge/index.php/GGS/article/view/666
Section
Articles

References

Aburjania, G. 2011, Formation of strong Stationary vortex turbulence in the terrestrial magnetosheat. Geomagn. Aeron. 51, 6, 720-729.

Aburjania, G., Chargazia, Kh., Zelenyi, L. and Zimbardo, G. 2009, Model of strong stationary vortical turbulence in space plasmas. Nonlin. Proc. Geophys., 16, 11-22.

Aburjania, G. and Chargazia, Kh. 2007, Dynamics of the large-scale ULF electromagnetic wave structures in the ionosphere. J. Atmos. Sollar-Ter. Physics, 69, 2428-2441.

Aburjania, G., Khantadze, A. and Kharshiladze, O. 2006, Mechanism of planetary Rossby wave amplification and transformation in t he ionosphere with an inhomogeneous zonal smooth shear wind. J. Geophys. Res., 111 A09304 doi: 10.1029/2005JA01/567.

Aburjania, G. 2006, Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media. KomKniga, Moscow (in Russian).

Aburjania, G., Chargazia, Kh., Jandieri, G., Khantadze, A. and Kharshiladze, O. (2004). On the new modes of planetary-scale electromagnetic waves in the ionosphere. Ann. Geophys., 22, 4, 508-517.

Abururjania, G., Jandieri, G. and Khantadze, A. (2003). Self-organization of planetary electromagnetic waves in E-region of the ionosphere. J. Atmos. Sollar-Ter. Physics, 65, 661- 671.

Aburjania, G., Khantadze, A. and Kharshiladze, O. (2002). Nonlinear planetary electromagnetic vortex structures in the ionosphere F-layer. Plasma Phys. Rep., 28, 7, 586-591.

Aburjania, G. and Machabeli, G. (1998). Generation of electromagnetic perturbations by acoustic waves in the ionosphere. J. Geophys. Res. A, 103, 9441-9447.

Aburjania, G. (1996). Self-organization of acoustic-gravity vortices in the ionosphere before earthquake. Plasma Phys. Rep., 22, 10, 954-959.

Aburjania, G. (1990). Structural turbulences and diffusion of plasmas in the magnetic traps. Plasma Phys. Rep., 16, 1, 70-76.

Al’perovich, L. and Fedorov, E. (2007). Hydromagnetic Waves in the Magnetosphere and the ionosphere. Sprimger.

Al’perovich, L., Drobgev, V., Sorokin, V. et al. (1982). On the midlatitude oscillations of thegeomagnetic field and its connection to the dynamical processes in the ionosphere. Geomag. Aeron., 22, 5, 797-802.

Bengtsson, L. and Lighthill, J. (Edits.). (1982). Intense Atmospheric Vortices. Springer-Verlag, Berlin –Heidelberg.

Burmaka, V. and Chernogor, L. (2004). Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of non-stationary natural processes. Geomagn. Aeron., 44, 3, 518-534.

Cavalieri, D., Deland, R., Poterna, J. et al. (1974). The correlation of VLF propagation variations with atmospheric planetary-scale waves. J. Atmos. Terr. Phys., 36, 561-574.

Chagelishvili, G., Rogava, A. and Tsiklauri, D. (1996). The effect of coupling and linear transformation of waves in shear flows. Phys. Rev. E, 53, 6028-6031.

Cmyrev, V., Marchenco, V., Pokhotelov, O. et al. (1991). Vortex structures in the ionosphere and magnetosphere of the Earth. Planet Space Sci., 39, 1025-1030.

Fagundes, P., Pillat, V., Bolzan, J. et al. (2005). Observation of F-layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region. J. Geophys. Res., 110 A, 1302.

Georgieva, K., Kirov, B., Atanasova, D. and Boneta, A. (2005). Impact of magnetic clouds on the middle atmosphere and geomagnetic disturbances. J. Atmos. Sollar-Terr. Phys., 67, (1,2), 163-176.

Gershman, B. N. (1974). Dynamics of the Ionospheric Plasma. Nauka, Moscow (in Russian).

Gill, E.: Atmosphere-Ocean Dynamic. Academic Press, New York, London, Paris.

Gossard, E. and Hooke, W. (1982). Waves in Atmosphere. Elsevier, Amsterdam 1975.

Haykovicz, L. A. (1991). Global onset and propagation of large-scale traveling ionospheric disturbances as a result of the great storm of 13 March 1989. Planet Space Sci., 10, 583- 593.

Jovanovich, D., Stenflo, L. and Shukla, P.K. (2002). Acoustic-gravity nonlinear structures. Nonl. Proc. Geophys., 9, 333-339.

Kamide, Y. and Chian, C.-L. (2007). Handbook of the Solar-Terrestrial Environment. Springer-Verlag, Berlin-Heidelberg.

Kelley, M. C. (1989). The Earth’s Ionosphere, Plasma Physics and Electrodynamics. Academic Press Inc., San Diego, California.

Kopitenko, Yu. A., Komarovskikh, M. I., Voronov, I. M. and Kopitenko, E. A. (1995). Connection between ULF electromagnetic litospheric emission and extraordinary behavior of biological system before the earthquake. Biofizika, 40, 1114-1119 (in Russian).

Magnus, K. (1976). Schwingungen, Teubner, Stuttgart.

Mallier, R. and Maslowe, S. A. (1993). A row of counter-rotating vortices. Phys. Fluids., 5, 1074-1075.

Manson, A. H., Heek, C. H. and Gregory, J. B. (1981). Winds and waves (10min-30day) in the mesosphere and lower thermosphere at Saskatoon. J. Geophys. Res., 86, 10, 9615-9625.

Monin, A. S. and Iaglom, A. N. (1967). Statistical Hydrodynamics V 2. Nauka, Moscow (in Russian).

Nezlin, M. V. (1999). Rossby solitary vortices on giant planets and in the laboratory. CHAOS, 4, 187-202.

Pedlosky, J. (1982). Geophysical Fluid Dynamics. Springer-Verlag, New York.

Petviashvili, V. I. and Pokhotelov, O. A. (1992). Solitary Waves in Plasma and in the Atmosphere. Gordon and Breach Reading.

Pokhotelov, O. A., Parrot, M., Pilipenko, V. A. et al. (1995). Response of the ionosphere to natural and man-made acoustic sources. Ann.Geophys., 13, 1197-1210.

Reddy, S. C., Schmid, P. J. and Hennigston, D. S. (1993). Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Math., 53, 15-23.

Shaefer, L. D., Rock, D. R., Lewis, J. P. et al. (1999). Detection of Explosive Events by Monitoring Acousticaly-Induced Geomagnetic Perturbations. Lawrence Livermore Laboratory.

Sharadze Z S, Mosashvili N V, Pushkova G N and Yudovich L A, 1989 Long-period wave disturbances in E-region of the ionosphere Geomagn. Aeron. 29 (6) 1032-1034

Sharadze, Z. S., Japaridze, G. A., Kikvilashvili, G. B. et al. (1988). Wavy disturbances of non-acoustical nature in the midlatitude ionosphere. Geomagn. Aeron., 27, 3, 446-451.

Sorokin, V. M. (1989). Wave processes in the ionosphere associated with geomagnetic field. Izv. Vuzov. Radiofizika, 31, 10, 1169-1179 (in Russian).

Stepanyants, Y. A. and Fabrikant, A. L. (1992). Features of the Cherenkov emisión of drift waves in hydrodynamics and in plasma. Sov. Phys. JETP, 102, 5, 1512-1523.

Trefenthen, L. N., Trefenthen, A. E., Reddy, S. C. and Driscoll, T. A. (1993). Hydrodynamic stability without eigenvalues. Science, 261, 578-584.

Zel’dovich, Ya. B. and Mishkis, A. D. (1972). Elements of Applied Mathematics. Nauka, Moscow (in Russian).

Zhou, Q. H., Sulzer, M. P. and Tepley, C. A. (1997). An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E-region heights. J. Geophys. Res., 102, 11, 491-505.