On the Preparation of the Initial Data For Prognostic Problem of the Baroclinic Ocean Dynamics
Main Article Content
Abstract
It is well known that quality of the hydrophysical fields received as a result of realization of the prognostic model of the dynamics of the baroclinic ocean considerably depends on quality of the input data. In the present study, on the basis of the conjugated equations and the perturbation theory the algorithm for specification of the observational data on the non-stationary processes, used in the boundary conditions on the free sea surface, is offered. With the purpose of convenience, at first the algorithm on preparation of the initial data for the prognostic model of the ocean dynamics is considered on an example of two-dimensional, xoz-coordinate plane, transfer-diffusion equation for a substance, and then - for a three-dimensional problem of dynamics of baroclinic ocean.
Article Details
References
1. Marchuk G. I. Numerical solution of problems of atmospheric and oceanic dynamics. Leningrad, Gidrometeoizdat, 1974, 303 p (in Russian).
2. Marchuk G. I. Mathematical modeling in the environmental problem. Moscow, Nauka, 312 p (in Russian).
3. Marchuk G. I., Zalesnyi V. B. Numerical model of large-scale circulation in the World ocean. In: Numerical methods of calculation of oceanic currents. Novosibirsk, 1974, p. 3-20 (in Russian).
4. Marchuk G. I., Kordzadze A. A., Skiba Yu. N. Calculation of major hydrological fields of the Black Sea on the basis of the splitting method. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1975, t. 11, N 4, p. 379-393.
5. Marchuk G. I., Kuzin V. I. On method of finite elements in modeling of oceanic currents. Novosibirsk, VTs SO AN SSSR, 1974, Preprint N 14, 82 p (in Russian).
6. Marchuk G. I., Kordzadze A. A., Zalesnyi V. B. Problems of mathematical modeling of sea and ocean currents. In: 7. 7. Differential and Integral Equations: Boundary-Value Problems. Tbilisi, 1979, pp. 99-151 (in Russian).
8. Marchuk G. I., Kordzadze A. A. Numerical modeling of sea dynamics on the base of splitting method. In: Numerical modeling of climate of the World ocean. OVM AN SSSR, Moscow, 1986, p. 151-163 (in Russian).
9. Marchuk G. I., etc. Mathematical models of ocean circulation. Novosibirsk, Nauka, 1980, 288 p (in Russian).
10 Manabe C., Brayan K. Climate and circulation of the ocean. Leningrad, Gidrometeoizdat, 1972, 192 p (in Russian).
11. Tamsaly R. E. Modeling of dynamics and structure of the Baltic Sea. Riga, Zvaygzne, 1979, 151 p. Ivanov Yu. A. Large-scale and synoptic variability of fields in the ocean. Moscow, Nauka, 1981, 188 p.
12. Bubnov M. A. Mathematical aspects of modeling of ghghghg and circulation in the baroclinic ocean. Novosibirsk, VTs SO AN SSSR, 1984, 152 p (in Russian).
13. Kuzin V. I. Method of finite elements in modeling of oceanic currents. Novosibirsk, VTs SO AN SSSR, 1985, 189 c (in Russian).
14. Kordzadze A. A. Mathematical modeling of sea currents (theory, algorithms, numerical experiments), OVM AN SSSR, Moscow, 1989, 218 p (in Russian).
15. Kordzadze, A. A., Demetrashvili, D. I., Surmava, A. A. Numerical modeling of hydrophysical fields of the Black Sea under the conditions of alternation of atmospheric circulation processes, Izvestiya RAS, Atmospheric and Oceanic Physics, 2008, v. 44, N 2, p. 213-224.
16. Kordzadze A. A., Demetrashvili D. I. About coupled regional modeling system the Black Sea- atmosphere. Journal of Environmental Protection and Ecology (JEPE), 2011, v. 12, p. 317326.
17. Kordzadze A. A., Demetrashvili D. I. Operative forecast of hydrophysical fields in the Georgian Black Sea coastal zone within the ECOOP. Ocean Sci. Discuss., 8, 2011, p.397-433, www.ocean.sci-discuss.net/8/397/2011/doi:10.5194/osd-8-397-2011.
18. Demyshev S. G., Korotaev G. K. Numerical modeling of the seasonal trend of synoptic variability of the Black Sea. Izv. Akad. Nauk, Fiz. Atmos. Okeana, 32, 1996, pp.108-116 (in Russian).
19. Blumberg A. F., Mellor G. L. Description of a three–dimensional coastal ocean circulation model. In : Three–dimensional Coastal Ocean Models. Washington : AGU, 1987, V.4, 208p.
20. Korotaev G. K., Eremeev V. N. Introduction in operative oceanography of the Black Sea. Sevastopol, HPC “EKOCI-Gideofizika” 382 p (in Russian).
21. Marchuk G. I., Kordzadze A. A. Perturbation theory and the formulation of inverse problems of ocean dynamics. Trudy TbilisskogoUniversiteta, Mathematics, Mechanics, Astronomy. Tbilisi, t. 259 (1920), pp. 49-65 (in Russian).
22. Kordzadze A., Kvaratskhelia D., Demetrashvili D. On the specification of the eddy viscosity coefficient in the Black Sea. J. Georgian Geophys. Soc.,1998, v.3B, pp.59–65.
23. Kordzadze A. A. About uniqueness of the solution of one problem of ocean dynamics. Dokl. AN SSSR, 1974, t. 219, N 4, pp. 856-859.
24. Kordzadze A. A. To uniqueness of the solution of quasilinear problems of ocean dynamics – In: Some problems of computing and applied mathematics. Novosibirsk, Nauka, 1975, pp. 77 – 89 (in Russian).
25. Kordzadze A. A. Resolvability of three-dimensional non-stationary problems of the baroclinic ocean. In: Mathematical Modeling of Ocean Dynamics (Mathematical Modeling of Dynamics of Atmosphere and Ocean), p.1, Novosibirsk, 1980, pp. 114 – 139 (in Russian).
26. Kordzadze A. A. Mathematical problems of solving problems of ocean dynamics. Novosibirsk, VTs SO AN SSSR, Novosibirsk, 1982, 148 p (in Russian).
27. Sukhonosov V. I. On the corrections as a whole of a three-dimensional problem of ocean dynamics. In: Mechanics of Inhomogeneous Continuous mediums. Novosibirsk. VTs SO AN SSSR, Novosibirsk, 1981, N 52, pp. 37-53 (in Russian).
28. Bubnov M. A. About resolvability of quasistationary linear dynamics problems of the baroclinic ocean dynamics. In: Mathematical Modeling of Ocean Dynamics (Mathematical modeling of dynamics of atmosphere and ocean), p. 1, Novosibirsk, 1980, pp. 59 – 75 (in Russian).